
Study of the Discontinuity of the
Exchange-Correlation Potential in an
Exactly Soluble Case

PAOLA GORI-GIORGI,1,2 ANDREAS SAVIN1
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ABSTRACT: It was found by Perdew et al. (Phys Rev Lett, 1982, 49, 1691) and by
Sham and Schlüter (Phys Rev Lett. 1983, 51, 1884) that the exact Kohn–Sham exchange-
correlation potential of an open system may jump discontinuously as the particle
number crosses an integer, with important physical consequences. Recently, Sagvolden
and Perdew (Phys Rev A 2008, 77, 012517) have analyzed the discontinuity of the
exchange-correlation potential as the particle number crosses one, with an illustration
that uses a model density for the H! ion. In this work, we extend their analysis to the
case in which the external potential is the simple harmonic confinement, choosing
spring-constant values for which the two-electron hamiltonian has an analytic solution.
This way, we can obtain the exact, analytic, exchange and correlation potentials for
particle number fluctuating between zero and two, illustrating the discontinuity as the
particle number crosses one without introducing any model or approximation. We also
discuss exchange and correlation separately. © 2009 Wiley Periodicals, Inc. Int J Quantum
Chem 109: 2410–2415, 2009
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1. Introduction

K ohn–Sham (KS) density functional theory
(DFT) (see, e.g., [1]) is a successful method for

electronic structure calculations, thanks to its
unique combination of low computational cost and
reasonable accuracy. In the Kohn–Sham formalism,
the total energy of a many-electron system in the
external potential V̂ ext " #i vext(ri) is rewritten as a
functional of the one-electron density !(r),

E$!% " Ts$!% # !dr$ext&r'!&r' # U$!% # Exc$!%. (1)

In Eq. (1), Ts[!] is the kinetic energy of a nonin-
teracting system of fermions (usually called KS sys-
tem) having the same one-electron density ! of the
physical, interacting system. The Hartree energy
U[!] is the classical repulsion energy, U[!] "
1/2(dr(dr)!&r'!&r)'"r % r)"!1 , and the exchange-
correlation functional Exc[!] must be approximated.
Minimization of Eq. (1) with respect to the orbitals
forming the KS determinant lead to the KS equa-
tions. Thus, instead of the physical problem, in KS
DFT we solve the hamiltonian of a model system of
noninteracting fermions in the one-body local po-
tential V̂ KS " #i$KS&ri' , with

$KS&r' " $ext&r' # $H&r' # $xc&r' (2)

$H&r' " !dr)
!&r)'

"r % r)" (3)

$xc&r' "
&Exc$!%

&!&r' , (4)

and we recover the energy of the physical, interact-
ing system, through the sum of the two functionals
U[!] * Exc[!].

In Refs. [2–4] an analysis of KS theory for sys-
tems with fluctuating particle number lead to the
conclusion that the exact exchange-correlation po-
tential $xc&r' may jump discontinuously by a spatial-
independent constant as the particle number
crosses an integer, with important physical conse-
quences. In the last years there has been new inter-
est in the derivative discontinuity of Exc[!] (see, e.g.,
[5-11]), and its existence has been questioned in Ref.
[12]. In a recent paper, Sagvolden and Perdew [13]
have given further support to the assumptions used

to find the exchange-correlation potential disconti-
nuity, and they have illustrated the discontinuity
when the particle number crosses one, using a
model density for the H! ion. They have also rig-
orously proved that the von Weizsäcker functional,

TvW$!% "
1
2!dr"+$!&r'"2 (5)

is the correct Ts[!] for a system with particle num-
ber N ' 2.

In this work we repeat a similar analysis for
electronic systems with particle number fluctuating
between zero and two when the external potential
is harmonic, vext(r) " 1/2 (2r2. Taut [14] has shown
that the corresponding hamiltonian for N " 2 elec-
trons is analytically soluble for some special values
of (, which means that, in such special cases, we
can calculate analytically the exact interacting den-
sity and the exact exchange-correlation potential
[15]. This way, we can illustrate the derivative dis-
continuity without relying on any approximation.
The paper is organized as follows. In Section 2, we
report the equations used to extract the exact ex-
change and correlation potentials from Taut’s [14]
analytical solutions. The corresponding results are
shown and analyzed in Section 3, and the last Sec-
tion IV is devoted to concluding remarks.

2. Theory

We consider a system with particle number fluc-
tuating between 0 and 2, in the harmonic external
potential vext(r) " 1/2 (2r2. This system can be
thought as arising from identical quantum traps
whose centers are separated by a very large dis-
tance [16]. If the energy of the physical system is
convex as a function of the integer particle number
M, i.e., if E(M) ' (E(M * 1) * E(M ! 1))/2, then the
system with noninteger particle number N is an
ensemble of only the two systems with integer-
particle number M and M * 1 such that M , N ,
M * 1 [2]. In the case treated here, $ext&r' " 1/2 (2r2,
the energy of the noninteracting system is convex,
and the electron-electron interaction seems to make
it strictly convex (see, e.g., the results for two-di-
mensional harmonic traps of Refs. [17] or the three-
dimensional case treated in Ref. [18]). The density
of the system with particle number 0 ' N ' 2,
!N(r) " !N(r), is then equal to [2, 13]
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!N&r' " %N!1&r' 0 ' N ' 1
&2 % N'!1&r' # &N % 1'!2&r' 1 ) N ' 2 (6)

The exact Kohn–Sham potential is, up to a con-
stant, given by the functional derivative with re-
spect to !N(r) of the von Weizsäcker functional of
Eq. (5),

$KS&r' "
+2$!N&r'
2$!N&r'

# const. (7)

The Hartree potential vH(r) can be easily calcu-
lated by plugging Eq. (6) into Eq. (3). The exchange
and correlation potential vxc(r) is then calculated
from Eq. (4), vxc(r) " vKS(r) ! vH(r) ! vext(r). Setting
vxc(r 3 -) " 0 for any fixed N determines the
arbitrary constant in the exchange-correlation po-
tential.

Splitting the potential vxc(r) into exchange and cor-
relation is subtle. When 0 ' N ' 1 we know that vx(r)
must exactly cancel the Hartree potential, vx(r) "
!vH(r), and that, since the correlation energy is zero,
vc(r) " 0. For 1 ' N ' 2 the sum U[!N] * Ex[!N]
should be equal to the expectation of the electron-
electron repulsion V̂ ee over the noninteracting ensem-
ble density matrix that yields !N(r). The noninteract-
ing density matrix that yields !N(r) and corresponds
to the kinetic energy functional of Eq. (5) is

.0 " &2 % N'"/101/1" # &N % 1'"/201/2", (8)

with

/1&r' " $!N&r'

N (9)

/2&r1,r2' " $!N&r1'

N $!N&r2'

N (10)

thus

U$!N% # Ex$!N% " Tr&.0V̂ee' "
2&N % 1'

N2 U$!N%. (11)

Unlike the Hartree functional U[!N] and the non-
interacting kinetic energy functional TvW[!N] of Eq.
(5), which have a simple explicit dependence on
!N(r) alone, we see from Eq. (11) that the exchange
functional Ex[!N] also explicitly depends on the par-
ticle number N. If we take the functional derivative
&/&!(r) of both sides of Eq. (11) at fixed constant N, the

exchange potential is not discontinuous at N " 1. If,
instead, we allow little variations of N with respect to
!N(r), by taking into account that N " (dr!N&r' , we
obtain, for the whole range 0 ' N ' 2,

$x&r'

" % % $H&r' 0 ' N ' 1

%
&N2 % 2N # 2'

N2 $H&r' #
2&2 % N'

N3 U$!N% 1 ) N ' 2

(12)

Equation (12) shows that, within the definition of
exchange of Eq. (11) and allowing variations of N
with respect to !, the discontinuity of the exchange
potential at N " 1 is a spatially independent con-
stant equal to

$x&r'"N31* % $x&r'"N31! " 2U$!1%. (13)

Exact exchange in an open system of fluctuating
electron number as also been widely discussed in
Ref. [19], where only the energy, and not the poten-
tial, has been analyzed.

When the external potential is harmonic,
vext(r) " 1/2 (2r2, we have !1(r) " (3/ 2/*3/ 2e!(r2.
The ground-state wavefunction of the hamiltonian
with N " 2 electrons has the form

2&r1,r2' " +&R',&r12', R "
"r1 # r2"

2 ,r12 " "r2 % r1". (14)

The center-of-mass wavefunction +(R) is a sim-
ple ground-state three-dimensional harmonic oscil-
lator state. Taut [14] has shown that for some spe-
cial values of ( also the relative wavefunction ,(r12)
has an analytic form. For some of these special
(-values we have calculated the corresponding
electronic density !2(r),

!2&r' " C
e!(r2

2(r!
0

-

dr12r12t&r12'
2&e!(&r!r12'2

% e!(&r*r12'2
',

(15)

where t(x) " e1/ 2(x2
,(x), and C is a normalization

constant. The function t(x) is a polynomial of some
finite order n (depending on (), so that the corre-
sponding !2(r) is completely analytical (see Appen-
dix A). This allows us to obtain the exact exchange-
correlation potentials up to any large r without
introducing any approximation. The large-r part of
the potentials is crucial to illustrate the derivative
discontinuity.
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Notice that similar calculations of the exact ex-
change-correlation potential and of other DFT-re-
lated properties for the N " 2 system have been
carried out in the past, mainly aimed at comparing
the exact potentials with current approximations
(see e.g., [15, 20, 21]). Here, our aim is to calculate
the exact potentials for 0 ' N ' 2 to study their
discontinuity as the particle number crosses one.

3. Results

We considered three cases for which ,(r12) of Eq.
(14) is analytical: ( " 1/2, ( " 1/10, and ( " (35 !
2$57 )/712 3 0.0173 (see Appendix A). The exact
exchange-correlation potentials for N slightly below
and slightly above 1 are reported in Figure 1. The
qualitative behavior is similar to the one reported by
Sagvolden and Perdew [13] obtained from the model
density of the H! ion: as N 3 1* the exchange-
correlation potential is, over a larger and larger range,
more and more equal to the N3 1! potential plus a
constant. The magnitude of the constant is, as ex-
pected [2-4], I ! A, where I is the ionization potential
and A the electron affinity. For closed-shell two-elec-
tron systems this amounts to I ! A " E2 ! 2E1, where
E2 is the energy of the system with N " 2 electrons
and E1 is the energy for N " 1. Figure 1 clearly shows
that, as argued in Refs. [2-4, 13], for any fixed given N
(above or below 1)

lim
r3-

$xc&r' " 0, (16)

but

lim
r3-

lim
N31*

$xc&r' " I % A. (17)

Notice that when ( " 1/2 and ( " 1/10 the N "
1.0000000001 vxc(r) starts to decay to zero for dis-
tances much larger than those considered in the
figure. The case of the ensemble H and H! studied
by Sagvolden and Perdew [13] resembles most
closely to the last case considered here, ( 3 0.0173.
This is due to the fact that the N " 2 H! system is
considerably correlated. In the case treated here,
vext(r) " 1/2 (2r2, the N " 2 system becomes more
and more correlated as ( 3 0. This is also consis-
tent with our previous work [22], in which we
compared the dependence on N (in the range 1 '
N ' 2) of the noninteracting kinetic energy of the

He series with the one of the Hooke’s atom series,
finding a resemblence of the H! case (He series)
with the low-( case (Hooke’s series).
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FIGURE 1. The exact exchange-correlation potential
for a system with particle number N fluctuating be-
tween zero and two in the external potential 1/2 (2r2,
for three values of (. The magnitude of the discontinu-
ity at N " 1 is equal to E2 ! 2E1. We have for ( " 1/2
E2 ! 2E1 " 1/2, for ( " 1/10 E2 ! 2E1 " 1/5, and for
( 3 0.0173 E2 ! 2E1 " 4( 3 0.06938.
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4. Conclusions

The discontinuity of the exact Kohn–Sham ex-
change-correlation potential was argued in Refs.
[2-4], and is known to have very important physical
consequences. In particular, the absence or the un-
derestimation of this discontinuity in local and
semilocal functionals explains why they often pro-
duce a qualitatively incorrect dissociation limit for
nonequilibrium nuclear positions and why they un-
derestimate charge-transfer excitation energies in
time- dependent DFT. In this work, we have calcu-
lated the exact Kohn–Sham exchange and correla-
tion potentials as the particle number crosses 1 for
a system which is analytically soluble. This way, we
have illustrated, at least in one case, the existence of
this discontinuity without relying on any approxi-
mation, thus providing further support to the as-
sumptions that were used for its prediction.

Appendix A: Analytical Densities for
N ! 2

As shown by Taut [14], for a set of special values
of ( the ground-state wavefunction of the two-
electron hamiltonian has the form

2&r1,r2,r12' " C̃e!
(

2 &r1
2*r2

2't&r12', (A1)

where r1 " "r1", r2 " "r2", r12 " "r2 ! r1", t(x) is a
polynomial of finite order n (depending on (), and
C̃ is the normalization constant. The easiest way to
obtain the density is to use the coordinates of Coul-
son and Nielson [23], r1, r2, and r12, for the integra-
tion over r2,

!2&r' " C
e!(r2

r !
0

-

dr12r12t&r12'
2!

"r2!r12"

"r2*r12"

dr2r2e!(r2
2
, (A2)

where C is again a normalization constant. Integra-
tion over r2 yields Eq. (15).

1. ( " 1/2

The density for ( " 1/2 has been reported by
several authors (see, e.g., Ref. [24]),

!2&r' "
e!

r2

2

4&8 # 5$*'*3/ 2& $2*'r2 # 7

#

4&r2 # 1'erf( r
$2)

r
* # 8e!

r2

2+, (A3)

where erf(x) is the error function.
2. ( " 1/10

!2&r' "
e!

r2

5

25000*&61* # 48$5*'r %1000r&r2 # 45'

# 5e
r2

10$10*,r&r4 # 190r2 # 2875' # 20&r4 # 50r2

# 175'erf( r
$10)-.. (A4)

3. ( " (35 ! 2$57 )/712 3 0.0173

In this case we obtain

!2&r' "
2
c(3/ 2!̃&$(r', (A5)

where

c "
*

384$3&67741 # 8855$57'* # 256&132

# 17$57'$&70 # 6$57'*%. (A6)

and

!̃& y' "
e!2y2

192& % 35 # 3$57'5y % y,8$ 178
35 % 3$57

&8

- & % 34410443 # 4535711$57' y6

# 4& % 307865169 # 39250957$57' y4

# &1987335802 % 305824402$57' y2

# 1407537905$57 % 11076745221) # ey2$*&16

- & % 34410443 # 4535711$57' y8

# 32& % 394348481 # 50982845$57' y6 # 8

- & % 773680875 # 26538047$57' y4
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# 56& % 358975185 # 8100493$57' y2 # 9

- & % 22356535675 # 2789329039$57')-
# 4ey2$ 178*

35 % 3$57
$16& % 34410443

# 4535711$57' y8 # 32& % 85568903

# 10946667$57) y6 % 56& % 53901687

# 8766619$57' y4 # 72& % 272540317

# 33930025$57) y2 # 33( % 412010907

# 53643311$57)]erf&y'.. (A7)
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