796 J. Chem. Theory Compw2007,3, 796-802

l‘ I ‘ Journal of Chemical Theory and Computation

High-Density Limit of Two-Electron Systems: Results
from the Extended Overhauser Approach T

Paola Gori-Giorgi* and Andreas Savin

Laboratoire de Chimie Therique, CNRS UMR7616, Urérsite Pierre et Marie Curie,
4 Place Jussieu, F-75252 Paris, France

Received January 15, 2007

Abstract: The “extended Overhauser model” [Overhauser, A. W. Can. J. Phys. 1995, 73, 683]
for the calculation of the spherically and system-averaged pair density (APD) has been recently
combined with the Kohn—Sham equations to yield realistic APD and correlation energies. In
this work we test this approach in the high-density (weakly correlated) limit of the He isoelectronic
series and of the Hooke’s atom isoelectronic series. Unlike many of the commonly used energy
functionals, the Overhauser approach yields accurate correlation energies for both series.

1. Introduction e 1n 20 WH(r )
Kohn—Sham (KS) Density Functional Thedry (DFT) is Bl = J,d L/(; dry A 1151e(13) oA (1)
nowadays one of the most popular methods for electronic ) ) _ _ )
structure calculations both in chemistry and solid-state where the interaction between the electrons is adiabatically

. . . . . =0, — i
physics, thanks to its combination of low computational cost turned on fromw=(r;;) = 0 to the Coulomb repulsion

and reasonable performances. The accuracy of a KS-DFTW »I'2) = 1/r1, by varying a real paramete (typical
examples arevi(riz) = Alriz, With Aonys = 1, or wi(ryp) =

result is limited by the approximate nature of the exchange- : ;
correlation energy density function&Jn]. Simple ap-  €f(ri2)/riz With Ashys = o). The one-electron density(r)
proximations (local-density approximation and generalized IS (ldeally) kept independent df and gqual to the one of ,
gradient corrections) foE,n] provide practical estimates the physical system by means of a suitable exterr]al potential
of thermodynamical, structural, and spectroscopic properties’/1 (r). In eq 1 the co.rrelatm.n pgrt of the sphencall){ and
of atoms, molecules, and solids. However, with the current sys.tem-averaged pair density (intracule densﬁlf;()lz) IS
approximations, KS-DFT is still lacking in several aspects, defined as follows. For each take the square of the many-

B I
in particular it fails to handle near-degeneracy correlation electron wavefunctiont’* ground state of the Hariltonian
effects (rearrangement of electrons within partially filled

shells) and to recover long-range van der Waals interaction Ny 2 N N
energies. The inaccuracy of KS-DFT stems from our lack H = — _ +} M(|r- —r))+ z/‘(r-) )
of knowledge ofE,{n], and much effort is put nowadays in G2 24 7 47

finding new approximations to this term (for recent reviews, . _ _
new KSE,Jn] is the use of the exact exchange functional electron distance,, = |ry — ro|
Ex[n] (in terms of the KS orbitals) and thus the search for

. . . ) N(N — 1)
an approximate, compaﬂble, co.rrelatlon funF:tloEaIn]. firy)=—— z f WA R, Fyy e 1))
An exact expression foEJn] is the coupling-constant 2 oo
integrab—2 dQr,
dRdr,...dr (3)
T Dedicated to Professor Dennis R. Salahub on the occasion of . A ]
his 60th birthday. whereR = (rl + r2)/2. The correlation part;(rio) is then
* Corresponding author e-mail: gori@Ict.jussieu.fr. defined asf §(ri2) = f4(r12) — fks(r12), where the intracule
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density of the KS system ffs(ri2) = f #=9(r12) (and yields a = k™ (Hooke's series), both Hamiltonians have the form
the Hartree plus the exchange energy). 5 5
\Y% Vv

The traditional DFT approach to the construction of H:l ——51_—32+5(51)+5(32)+%)E
approximateE,[n] is based on the idea of universality. For o2 2 2 s,
example, the familiar local-density approximation (LDA)
consists of transferring, in each point of space, the pair
density from the uniform electron gas to obtain an ap-
proximation for f4(r;;) in eq 1. In a couple of recent Where(s) = —1/sfor the He series, ani{s) = s%/2 for the
paper€-11 we have started to explore a different way of Hooke’s atom series. We thus study pertubatively the system
constructing En], based on an “average pair density described byHo + oHs.
functional theory” (APDFT), which was inspired by the The order zero of the one-electron densify) and of the

seminal work of Overhausér and its subsequent ex- intracule density(r1y), in scaled units, is simply

a%(ﬂo +afly (5)

tensions3~%¢ In this approach, we solve a set of radial (one- 2
imensi idinger-i | ive. in pri e (He)
dimensional) Schinger-like equations that give, in prin- ne (
ciple, the exact #(r1,) along the DFT adiabatic connection. n(s) = 2 o (6)
In practice, this formalism contains an unknown effective ﬂT,ze (Hooke)

electron-electron interaction that needs to be approximated.

The APDFT equations must be solved for each system and 1 o 25

combined self-consistently with the KS equatidhBrelimi- 22,3 T 652+ 4s5)e = (He)

nary applications of this approach, combined with a simple f sy = 1

approximatiofi for the effective electronelectron interaction (27[—)3/2

that enters in the formalism, gave accurate intracule densities

f(r12) and correlation energid&[n] for the He isoelectronic  These functions are correctly normalized, so that if we switch

series¥t back to coordinates we haven®(r) = a3n©(s = o 1),
Katriel et al’” have recently tested most of the currently etc.

available correlation energy functionals in the high-density =~ The first-order correction to the scaled densitys) =

(weakly correlated) limit of the He and of the Hooke’s atom n©(s) + an®X(s) + ... is given by

isoelectronic series, finding that, while several functionals @ rx o (0)

are accurate for the He sequence, none is satisfactory for N (s) = 20 (9x(9) (8)

the Hooke’s atom series. Motivated by their findings, in this \yperas

work we compute the correlation energy and the intracule

) (7)
el (Hooke)

density in the high-density limit of the two series via the o 23_ e* 3 ,31-e”® 5
APDFT approachi; ! finding accurate results in both cases. X 32 4 8716 s 8
The paper is organized as follows. In the next section, gEi(—Zs) _gm(s) 9)

section 2, we recall the basic equations that define the high-
density limit of the He and Hooke’s atom sequences, 10 for the He isoelectronic series, wih= 0.577216 .. ,
which we apply, in sections 3 and 4, the formalism of refs

9—11 to compute the intracule density and the correlation Ei(—x) = — foo Edt (10)
energy. In section 5 we also analyze the failure of LDA in Xt

this limit from the point of view off(r1,). The last section, 920

section 6, is devoted to conclusions. and*

_ _ o (S):erf(s)_«/5(1+In2)_ifm
2. The High-Density Limit of the He and x s Jn /o

Hooke’s Atom Isoelectronic Series
—(x+9) 22 .S X2 g o
The two Hamiltonians analyzed in this paper read e ) % [ex erfc{ ﬁ) Vax o2 dteferfe()| (11)

dx (e—(X—S)2 _

2 2 for the Hooke's atom isoelectronic series.

H=- 71 — 72 +ou(ry) + o(ry) + ri By definition, the Kohr-Sham Hamiltonian describes a
12 noninteracting system that has the same density of the
7 _ physical, interacting system. Thus, the first-order change in
T He series the electron density of eq 8 corresponds to a first-order
u(r) = (4) change in the KS system. Therefore, we write the scaled
=kr* Hooke’s atom series intraculef(s;2) up to ordersu as

2
f(s1) = VAsp) + e [fes (510 + £ 5] + O() (12)
We are interested in the high-density (weakly correlated)

limit, which corresponds td — c andk — . By switching where we have separated the first-order correction into a
to scaled coordinates= r/a, with o = Z™1 (He series) and ~ Kohn—Sham part and a correlation part. The KS ﬂé{]@ is
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entirely determined by the first-order densitif) of eq 8

fid(si) = [ ds s+ s;)nex(9)

and is reported in Appendix A in analytic form for the He
isoelectronic series, while it is obtained numerically for the
case of the Hooke's series.

The total first-order intraculé ® = f &2 + & is known
analytically in the case of the Hooke's setfe®

(13)

—5,,2/4] S22 S,
capgy 26 14n2 1 e _2)+
(52 (27'[)3/4[ Vor S S V2
V2 j;)SLZ"/E derfct)dt| (14)

3. Effective Equations for
High-Density Limit

3.1. Formalism. We are interested in calculatirfd? and
the corresponding second-order correlation enE‘ﬁywith

the method of refs-911, in which the intracule densif{r1,)

of the physical system is obtained from a set of effective
equations, which for two-electron systems reduce to

f(r12) in the

[ Viao" + Werlr )19 () = (1) (15)
with f(riz) = |9(rip)|% Equation 15 can be derived by
considering®!a set of Hamiltonians characterized by a real
paramete

N Viz 1 N
— 4= Z wWA(r,

; 2 iH=1

HE

N
_rj|)+§ Une(ri)r

f5(ryp) = f(ry,) D& (16)

that describe a set of systems in which the external potential

is turned off as€ — 0, and the intracule density is kept fixed,

equal to the one of the physical system, by means of a

suitable electrorelectron interactionvé(ry,). In the caseN
= 2, when& = 0 we have a translationally invariant system

(the center-of-mass degree of freedom is described by a plan

wave) of two fermions in a relative bound state (similar to
the case of positronium but with a different interaction). This

relative bound state is such that the square of the wavefunc-

tion for the relative coordinate;; is equal tof(ryz) of the
starting physical system and is thus described by et 15.

For more than two electrons, in the case of a confined system

(atom, molecule), the limi — 0 in eq 16 describes a cluster
of fermions, and eq 15 becomes an approximafidr?ifor
the internal degrees of freedom of the cluster.

Here we focus on the high-density limit of the Hamilto-
nians of eq 5, and we thus stick to the clke 2. In general,
the effective electronelectron interactiomves(ri2) in eq 15

is not known and must be approximated. In the case of the

He series, we have foufid?! that a simple approximation
based on the original idea of Overhaudét gives very
accurate results for 2 Z < 10. In what follows we analyze
the performance of the same approximation in the very
oo limit, and we extend our study to the— o limit of the
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center-of-mass and relative coordinates, so that the axgct
(r12) is directly available. However, the point here is to check
whether the same approximatg(ri,) that accurately
describes the He series is capable of yielding also good
results for the Hooke’s series, since this seems to be not the
case for the currently available correlation energy function-
als’

The construction of an approximation for theeeffective
potentialwey starts with the decompositiért*

Wer(T15) = Wt (10) + Weg(r 1) 17)

wherewss = v2,/fo//fs is the potential that generates the
Kohn—Shamfgs via eq 15, andwg(rio) is a correlation
potential that needs to be approximated. In the usual DFT
language, eq 17 implies that we are treating exchange exaclty.

In scaled unitss, using standard perturbation theory we
obtain the equation for the first-order contributionftfsee
eq 12] that separates into the Kehdham and the correlation
parts

-9+ WO Ol = [~ WO 19
[-V2+ Wi — €y = [ —weT 9@ (19)
wherey© = vf © £ = 2¢Oy 0 = 20D and

2(8s),' — 83y, — 38s;,” — 365, 9) 1
(4s,” + 65}, + 3)°

W) =

(He series) (20)

2
\/V';{?(O)(Slz) = 5172 (Hooke's series) (21)

In eq 18,f {2 is exactly known for both series, so that we

can also obtaim;™ by inversion.
We thus concentrate on the correlation part, since we want

Jo test approximations fowg. Defining u(x) = xy(x)

andug(X) = xyp©(x), we have

d SO 0 1 1
g+ o] o= o -

Following the method of refs 18 and 225 we look for a
solution of the kindu(xX) = up(X)y(x). The functiony(x) is
then given by

(22)

y) = J;Xu‘i'—?x,)ﬁf Uy (X)WEP(X") — ePldx” + C, (23)
0

The constanC; is fixed by requiring the proper normaliza-

tion
St dx=0= [ yx)u, (x) dx=0 (24)

The other integration constant has been fixed in eq 23 by

Hooke’s atom series. Of course, in the special case of thesetting equal to zero an unphysical te@a /* uaz(x’)dx’
Hooke’s series, the Hamiltonian (5) is exactly separable into that would makeu.(x) diverge for largex.
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3.2. Testing Approximations: The Overhauser Poten-
tial. In refs 9-11 an approximation fonS; was built as an
average “Overhauser-type” potentfaf

ef‘f(rlz) +
12

2r,

—)9(r ) (25)

where6(x) is the Heaviside step function, amgis related
to the average density or, better, to the dimension of the
system. For two-electron atoms it was simply estimatéd as

.= (%” ﬁ)fm (26)
where
5 =% [ drn(ry? @7)

The idea beyond this approximation is the following. The
e—e correlation potentialS,(ri2) changes the KohaSham
f into the physical one and must thus keep the information
on the one-electron density (which is the same in the two
systems) while turning on the-e interaction Ith.. In eqgs
25—27 this information is approximately kept via the average
densityn.

In scaled units, the Overhauser potential to first order in
a, to be used in eq 19, becomes

(1)(312) ( S12 3

+—3——) &—s) (28)
Sz 25,
where, if we adopt the prescription of eqs 26 andR%
318 4+ O(q) for the He series ang, = (3v/7)Y3 + O(0) for
the Hooke’s atom series.

Equation 23 with the potential of eq 28 can be evaluated
analytically as a function of;; and 5 for both series,
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Figure 2. The correlation part of the first-order intracule, f.-
(s12) [see eq 12], for the Hooke’s series. The exact values
are compared with the results from the Overhauser-type
approximation of eq 28.
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Figure 3. The decomposition of the first-order intracule
intracule density f M(s;,) [see eq 12]: the Kohn—Sham part

although the final expressions are cumbersome and will notand the correlation part.

be reported here. The resultifg” for the He series is
shown in Figure 1, together with the corresponding scaled
quantity, Z-%(s/Z), for some finite Z. [Since f{(s) =
lim,... Z fy(s), and f(s) = Z3f(gZ), the quantity to be
compared withf () is Z-%(s/2).] For finite Z we show
both the “exact” resut and the approximate restitibtained

0+

-0.01

Z=4
0.02 &

Z721(ry0)

Z=10

-0.03
“exact’

Z=c0 approx. -
0.5 1 1.5
S1p=2Zrp

-0.04

0

Figure 1. The correlation part of the intracule density, f, = f
— fks, divided by Z2, as a function of the scaled variable s;,
= Zr;, for the He isoelectronic series. The “exact” results are
obtained from the accurate wavefunctions of ref 26. Ap-
proximate results at finite Z using the “Overhauser model” are
taken from ref 9. The Z = o result corresponds to eq 23 with
the potential of eq 28.

with the Overhauser-type potential of eqs-25. We see
that theZ dependence of the short-range partfofs very

well captured by this simple approximation. Figure 1 also
suggests that the — oo limit of the short-range part df is

well described by this approach. In Figure 2 we show the
result forf ! in the case of the Hooke’s series from the
Overhauser potential compared to the exact one, finding very
accurate agreement.

The KS and the correlation componentd 6f are shown
in Figure 3 for both series. We see that in the case of the He
series the KS and the correlation parts have roughly the same
depth, while in the case of the Hooke’s series the correlation
part is much deeper than the KS one. This is due to the fact
that the KS part gives the change in theee distance
probability distribution only due to the first-order change in
the one-electron density. In the case of the Hooke’s series
the first-order change in the density is much smaller, since
the harmonic confining external potential is stronger than
the Coulombic one. Indeed, the functig(s) of eq 8 in the
case of the He series is about twice the one for the Hooke’s
atom series.
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4. Adiabatic Connection and Correlation
Energy
The APD f((s;,) gives the correlation contribution to
second order to the expectatid¥.d]of the Coulomb The Overhauser-type potential corresponding to this interac-
electron-electron repulsion operatoVee = 1/r1» tion is reported in the appendix of ref 9. For the He
isoelectronic series with Z Z < 10, the Overhauser-type
g eD: [o@/ IP + o2V [P + 0(a¥)] (29) approximation combined with the “erf" adiabatic connection
gived correlation energies with errors within 4 mH, better
than the linear adiabatic connection that gives errors within
where 10 mH.
In the weakly correlated limit, instead, we obtained, via
) — ) ) ' ’ ,
Ved ' = Wedifs + Ved eq 33,E® = —0.041 Ha for the He series arf? =
—0.046 Ha for the Hooke’s series. The errors with respect
to the exact values, 6 mH and 4 mH, respectively, are thus
0 slightly worse than those obtained with the linear adiabatic
Vod? = [ 4 51 M s1)dsy, o) SNy

EQ = [ di [} dsAnsy,? 0(s,) 2= e ey

and

our f® from the Overhauser potential giveV, /P = o _ _

—0.10256 Ha for the He sequence (to be compared with the2: 1h€ LDA Failure in the High-Density

exact’ value, —0.09333 Ha) andV,J¥ = —0.10377 Ha lelt:_ An Analysis from the Intracule

for the Hooke’s series (to be compared with the eXgét ~ Density

value, —0.09941 Ha). The error is thus 9 mH for the He As a further element of comparison, we also computed the

series and 4 mH for the Hooke's series. first-orderf(cl)(slz) within the local-density approximation
The correlation energy can then be otbained via the (LDA)

adiabatic connection formula of eq 1, which 67 reads

(0)
WE) 19194,y =tim 2 1 g e gss ar@) s (3

E®= Aphysd/l j; ds,, 47 5,7 A

c

“ wheregy(riz; rs) is the pair-correlation function of the uniform
where f ;) is the first-order correlated part dffor the electron ga¥ of densityn = (47r¥/3)%, and

system with interactionw’(syy). If we were able to calculate

the exactf”® for any W/, the resultingE® from eq 31 . 0y 173 0
would be ir(;dependent of the choice wf. I-C|owever, when ke(9) =[BT, (o) = [ b s )] (35)
we deal with approximations, we can obtain better results
with some choices rather than others. With these definitions, the density parametgsf the uniform
As in ref 9, we build an Overhauser-type potential along electron gas is locally proportional to We have numerically
the adiabatic connection as evaluated the right-hand-side of eq 34 at smaller and smaller

o (i.e., at larger and largef andk), for 0 < s, < 5. Asa
Wi (S 5) = W(sp,) — f‘s‘ﬁgs ' (|s— s,l) ds (32) decreases, the results tend to a well-defined curve, shown
in Figures 4 and 5, together with the result from the
where, in scaled units, if we stick with the choice of eqs 26 Overhauser model (He series) and the exact result (Hooke’s
and 27,n = (4n)~ for the He series and = (4739~ for sengs). o
the Hooke's series. The idea behind eq 32 is that the average Since, as shown by eq 34, the— 0 limit corresponds to
densityn (and thus the averag®) is kept fixed to mimic thers.—> 0 limit of the uniform electron gas pair-correlation
the fact that the one-electron density does not change alongunction g, to better understand the LDA result forwe

the adiabatic connection while we turn on theesinterac- ~ Now analyze more in detail the high-density behaviogof
tion. This analysis extends and completes the one done in ref 35.
4.1. Linear Adiabatic Connection. If we setw!(s;,) = Whenrs — 0, the short-range part @f scales as

Alsy, eq 32 simply gives the Overhauser potential of eq 28
with a multiplying factorZ in front. From eq 23, we see that 9% rs—0)=rg. ") + OfZInr), x=ryr, (36)

this corresponds t&? = [V, /2, as in the exact case.

l.e., the simple approximation of eq 32 has the correct scalingwhere the funct|org(1)(x) does not depend explicitly on

behavior in theat — 0 limit. Our result forE(Z) with the and has been computed by Rassolov ¢4llt is accurately

linear adiabatic connection thus gives an error of 4.5 mH recovered by the mode). of ref 34 that we have used in

for the He series and 2 mH for the Hooke’s series. the evaluation of eq 34. The scaled variallés locally
4.2. The “erf” Adiabatic Connection. A choice forw* proportional to the scaled variabdg, [see eq 35]. Equation

that separates short- and long-range effects is the “erf” 36 thus shows that the short-range part (corresponding to
adiabatic connectiof?®-33 wi(s;p) = erf(1s12)/s12, for which values of the scaled variablenot too large) ofg. in thers
eq 31 becomes — 0 limit has a scaling similar to the one of the He and
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Figure 4. The correlated part of the intracule density,
fB(s12), of order o = 1/Z for the He series [see eq 12]: the
present calculation is compared with the LDA approximation
(panel a). Panel b shows the same quantities multiplied by
4ms;,: the integral under each curve gives the correlation part
of the second-order contribution to the expectation value (V[
which diverges in the case of LDA.

Hooke’s series in thet — 0 limit. This is also reflected by
a good performance of LDA fa; < 1, as shown by Figures
4 and 5.

However, the high-density electron gas is an extended
system with important long-range correlations that are not
present in finite systems like atoms and molecules. In fact,
the scaling of eq 36 is not valid when> 1: it has been
shown that the long-range part gf scales a%-38:39

g(x> 1,1 —~r’h(v) (37)
wherev is another scaled variable,= \/r_sx, which is thus
locally proportional tovasy,. The functionh(v) has the
following asymptotic behaviors

h(v < 1)O v2 h(z>1)0O v (38)

which are also correctly included in the modglof ref 34.
Whenrs— 0 (i.e.,a — 0), even for very large the scaled
variablev is small, so that the long-range ¥ 1) behavior

of gc is more and more dominated by the smalpart of
h(v), i.e., it behaves more and more like? rather than like
v~% It is this increasing dominance of the “short-range
component of the long-range part” that causesiteg (rs)
behavior in the correlation energy per electron of the high-
density electron gas and thus the divergence of the LDA
correlation energy in the larggand largek limit of the He
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Figure 5. The correlated part of the intracule density,
fB(sy,), of order oo = k-4 for the Hooke's atom series [see
eq 12]: the exact result is compared with the LDA approxima-
tion (panel a). Panel b shows the same quantities multiplied
by 4ms;,: the integral under each curve gives the correlation
part of the second-order contribution to the expectation value
Veel) which diverges in the case of LDA.

ri2. For this reason, thél log (rs) high-density behavior of
the correlation energy is still present in a uniform electron
gas with screened (or short-range only) Coulomb interaction
(e.g.# erfclriz)/riz), while it is absent in an electron gas
with long-range-only interaction (e.tf3 erf(Ari2)/r12).

6. Conclusions

We have computed the intracule density and the correlation
energy for the high-density (weakly correlated) limit of the
He and Hooke’s atom isoelectronic series via an appfodch
based on an “average pair density functional theory”
(APDFT) and inspired by the seminal work of Overhad3éf.
Unlike the currently available correlation energy functionals
analyzed in ref 17, the APDFT approach gives accurate
results for both series. In its present formulation, the APDFT
approach works well for two-electron systems and for the
uniform electron gas. Its extension to many-electron systems
of nonuniform density is a big challenge, and we are
presently exploring several different paths to achieve this
ambitious goat!

We have also analyzed the LDA failure in the same weakly
correlated limit of the He and Hooke’s atom series, in terms
of the long-range part of the intracule density. The results
of Katriel et alt” show that higher-order functionals such as
PBE* and TPS%® can reasonably fix the LDA problems in
the case of the He isoelectronic series but are much less

and Hooke’s atom sequences (see, e.g., ref 40). In fact, whersatisfactory for the Hooke’s atom sequence, yielding a wrong

Z — o (or k — o), the high-density long-range behavior of
0. affects the long-range part 6t°"(s,) in eq 34.

The smally behaviord v 2 of the functionh(v) is related
to the 1f;, divergence of the Coulomb potential sinall

scaling in thek — oo limit (PBE) or a correct scaling with

an error of about 40% on the asymptotic value of the
correlation energy (TPSS). As stressed by Katriel et’al.,
these differences in performances for the two series raise
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serious doubts on the universality of currently available (20) Cioslowski, J.; Pernal, KI. Chem. Phys200Q 113 8434.
correlation energy functionals. The accuracy of the results (21) Nagy, A J. Chem. Phys2006 125 184104

obtained via the APDFT approach for both series suggests (22) Dalgarno, A.: Lewis, J. TProc. Roy. Soc. (Londdri955
that the effort toward its generalization to many-electron A23370.

systems of nonuniform density could be really worthwhile.

Appendix:  f{(r1,) for the He Isoelectronic
Series
For the He isoelectronic series eq 13 corresponds to

B (x) = Sef‘lﬂ)(me*‘“[—m +3x(L+ ) +

81e”(x — 1)[Ei(—6X) — Ei(—4X)] + e *[164 +
27(3+ x(9 + 4x(3 + 2)))[Ei(—2x) — v — log(¥)] +
3X[—163+ 6x (15+ x(7 + 10x)) — 27 log(4/3)]—

162 log(2)+ 81 log(3)} (39)

wherey and the function Ei have been defined after eq 9.
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