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Abstract: The “extended Overhauser model” [Overhauser, A. W. Can. J. Phys. 1995, 73, 683]

for the calculation of the spherically and system-averaged pair density (APD) has been recently

combined with the Kohn-Sham equations to yield realistic APD and correlation energies. In

this work we test this approach in the high-density (weakly correlated) limit of the He isoelectronic

series and of the Hooke’s atom isoelectronic series. Unlike many of the commonly used energy

functionals, the Overhauser approach yields accurate correlation energies for both series.

1. Introduction
Kohn-Sham (KS) Density Functional Theory1-3 (DFT) is
nowadays one of the most popular methods for electronic
structure calculations both in chemistry and solid-state
physics, thanks to its combination of low computational cost
and reasonable performances. The accuracy of a KS-DFT
result is limited by the approximate nature of the exchange-
correlation energy density functionalExc[n]. Simple ap-
proximations (local-density approximation and generalized
gradient corrections) forExc[n] provide practical estimates
of thermodynamical, structural, and spectroscopic properties
of atoms, molecules, and solids. However, with the current
approximations, KS-DFT is still lacking in several aspects,
in particular it fails to handle near-degeneracy correlation
effects (rearrangement of electrons within partially filled
shells) and to recover long-range van der Waals interaction
energies. The inaccuracy of KS-DFT stems from our lack
of knowledge ofExc[n], and much effort is put nowadays in
finding new approximations to this term (for recent reviews,
see, e.g., refs 2-4). A popular trend in the development of
new KSExc[n] is the use of the exact exchange functional
Ex[n] (in terms of the KS orbitals) and thus the search for
an approximate, compatible, correlation functionalEc[n].

An exact expression forEc[n] is the coupling-constant
integral5-8

where the interaction between the electrons is adiabatically
turned on fromwλ)0(r12) ) 0 to the Coulomb repulsion
wλ)λphys(r12) ) 1/r12 by varying a real parameterλ (typical
examples arewλ(r12) ) λ/r12, with λphys ) 1, or wλ(r12) )
erf(λr12)/r12, with λphys ) ∞). The one-electron densityn(r )
is (ideally) kept independent ofλ and equal to the one of
the physical system by means of a suitable external potential
Vλ(r ). In eq 1 the correlation part of the spherically and
system-averaged pair density (intracule density)f c

λ(r12) is
defined as follows. For eachλ, take the square of the many-
electron wavefunctionΨλ ground state of the Hamiltonian
Hλ

and integrate it over all variables except the scalar electron-
electron distancer12 ) |r 1 - r 2|

whereR ) (r 1 + r 2)/2. The correlation partf c
λ(r12) is then

defined asf c
λ(r12) ) f λ(r12) - fKS(r12), where the intracule
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density of the KS system isfKS(r12) ) f λ)0(r12) (and yields
the Hartree plus the exchange energy).

The traditional DFT approach to the construction of
approximateEc[n] is based on the idea of universality. For
example, the familiar local-density approximation (LDA)
consists of transferring, in each point of space, the pair
density from the uniform electron gas to obtain an ap-
proximation for f c

λ(r12) in eq 1. In a couple of recent
papers,9-11 we have started to explore a different way of
constructing Ec[n], based on an “average pair density
functional theory” (APDFT), which was inspired by the
seminal work of Overhauser12 and its subsequent ex-
tensions.13-16 In this approach, we solve a set of radial (one-
dimensional) Schro¨dinger-like equations that give, in prin-
ciple, the exactf λ(r12) along the DFT adiabatic connection.
In practice, this formalism contains an unknown effective
electron-electron interaction that needs to be approximated.
The APDFT equations must be solved for each system and
combined self-consistently with the KS equations.11 Prelimi-
nary applications of this approach, combined with a simple
approximation9 for the effective electron-electron interaction
that enters in the formalism, gave accurate intracule densities
f(r12) and correlation energiesEc[n] for the He isoelectronic
series.9,11

Katriel et al.17 have recently tested most of the currently
available correlation energy functionals in the high-density
(weakly correlated) limit of the He and of the Hooke’s atom
isoelectronic series, finding that, while several functionals
are accurate for the He sequence, none is satisfactory for
the Hooke’s atom series. Motivated by their findings, in this
work we compute the correlation energy and the intracule
density in the high-density limit of the two series via the
APDFT approach,9-11 finding accurate results in both cases.

The paper is organized as follows. In the next section,
section 2, we recall the basic equations that define the high-
density limit of the He and Hooke’s atom sequences, to
which we apply, in sections 3 and 4, the formalism of refs
9-11 to compute the intracule density and the correlation
energy. In section 5 we also analyze the failure of LDA in
this limit from the point of view off(r12). The last section,
section 6, is devoted to conclusions.

2. The High-Density Limit of the He and
Hooke’s Atom Isoelectronic Series
The two Hamiltonians analyzed in this paper read

We are interested in the high-density (weakly correlated)
limit, which corresponds toZ f ∞ andk f ∞. By switching
to scaled coordinatess ) r /R, with R ) Z-1 (He series) and

R ) k-1/4 (Hooke’s series), both Hamiltonians have the form

whereṼ(s) ) -1/s for the He series, andṼ(s) ) s2/2 for the
Hooke’s atom series. We thus study pertubatively the system
described byH̃0 + RH̃1.

The order zero of the one-electron densityn(r) and of the
intracule densityf(r12), in scaled units, is simply

These functions are correctly normalized, so that if we switch
back to coordinatesr we haven(0)(r) ) R-3n(0)(s ) R-1r),
etc.

The first-order correction to the scaled density,n(s) )
n(0)(s) + Rn(1)(s) + ... is given by

where18

for the He isoelectronic series, withγ ) 0.577216 .. ,

and19,20

for the Hooke’s atom isoelectronic series.
By definition, the Kohn-Sham Hamiltonian describes a

noninteracting system that has the same density of the
physical, interacting system. Thus, the first-order change in
the electron density of eq 8 corresponds to a first-order
change in the KS system. Therefore, we write the scaled
intraculef(s12) up to ordersR as

where we have separated the first-order correction into a
Kohn-Sham part and a correlation part. The KS partf KS
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(1)(s12)] + O(R2) (12)

High-Density Limit of Two-Electron Systems J. Chem. Theory Comput., Vol. 3, No. 3, 2007797



entirely determined by the first-order densityn(1) of eq 8

and is reported in Appendix A in analytic form for the He
isoelectronic series, while it is obtained numerically for the
case of the Hooke’s series.

The total first-order intraculef (1) ) f KS
(1) + f c

(1) is known
analytically in the case of the Hooke’s series19,20

3. Effective Equations for f(r12) in the
High-Density Limit
3.1. Formalism. We are interested in calculatingf c

(1) and
the corresponding second-order correlation energyEc

(2) with
the method of refs 9-11, in which the intracule densityf(r12)
of the physical system is obtained from a set of effective
equations, which for two-electron systems reduce to

with f(r12) ) |ψ(r12)|2. Equation 15 can be derived by
considering10,11a set of Hamiltonians characterized by a real
parameterê

that describe a set of systems in which the external potential
is turned off asê f 0, and the intracule density is kept fixed,
equal to the one of the physical system, by means of a
suitable electron-electron interactionwê(r12). In the caseN
) 2, whenê ) 0 we have a translationally invariant system
(the center-of-mass degree of freedom is described by a plane
wave) of two fermions in a relative bound state (similar to
the case of positronium but with a different interaction). This
relative bound state is such that the square of the wavefunc-
tion for the relative coordinater12 is equal tof(r12) of the
starting physical system and is thus described by eq 15.10,11

For more than two electrons, in the case of a confined system
(atom, molecule), the limitê f 0 in eq 16 describes a cluster
of fermions, and eq 15 becomes an approximation10,11,21for
the internal degrees of freedom of the cluster.

Here we focus on the high-density limit of the Hamilto-
nians of eq 5, and we thus stick to the caseN ) 2. In general,
the effective electron-electron interactionweff(r12) in eq 15
is not known and must be approximated. In the case of the
He series, we have found9-11 that a simple approximation
based on the original idea of Overhauser12,13 gives very
accurate results for 2e Z e 10. In what follows we analyze
the performance of the same approximation in the veryZ f
∞ limit, and we extend our study to thek f ∞ limit of the
Hooke’s atom series. Of course, in the special case of the
Hooke’s series, the Hamiltonian (5) is exactly separable into

center-of-mass and relative coordinates, so that the exactweff-
(r12) is directly available. However, the point here is to check
whether the same approximateweff(r12) that accurately
describes the He series is capable of yielding also good
results for the Hooke’s series, since this seems to be not the
case for the currently available correlation energy function-
als.17

The construction of an approximation for the e-e effective
potentialweff starts with the decomposition9-11

whereweff
KS ) ∇2xfKS/xfKS is the potential that generates the

Kohn-Sham fKS via eq 15, andweff
c (r12) is a correlation

potential that needs to be approximated. In the usual DFT
language, eq 17 implies that we are treating exchange exaclty.

In scaled unitss, using standard perturbation theory we
obtain the equation for the first-order contribution tof [see
eq 12] that separates into the Kohn-Sham and the correlation
parts

whereψ(0) ) xf (0), f KS
(1) ) 2ψ(0)ψKS

(1), f c
(1) ) 2ψ(0)ψc

(1), and

In eq 18,f KS
(1) is exactly known for both series, so that we

can also obtainweff
KS(1) by inversion.

We thus concentrate on the correlation part, since we want
to test approximations forweff

c . Defining uc(x) ) xψc
(1)(x)

andu0(x) ) xψ(0)(x), we have

Following the method of refs 18 and 22-25 we look for a
solution of the kinduc(x) ) u0(x)y(x). The functiony(x) is
then given by

The constantC2 is fixed by requiring the proper normaliza-
tion

The other integration constant has been fixed in eq 23 by
setting equal to zero an unphysical termC1 ∫x u0

-2(x′)dx′
that would makeuc(x) diverge for largex.

fKS
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2 - 36s12 - 9)

(4s12
2 + 6s12 + 3)2

- 1

(He series) (20)
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KS(0)(s12) )

s12
2
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(Hooke’s series) (21)
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dx2
- weff

KS(0) + ε
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c(1) - εc
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x dx′
u0
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3.2. Testing Approximations: The Overhauser Poten-
tial. In refs 9-11 an approximation forweff

c was built as an
average “Overhauser-type” potential12,13

whereθ(x) is the Heaviside step function, andrjs is related
to the average density or, better, to the dimension of the
system. For two-electron atoms it was simply estimated as9

where

The idea beyond this approximation is the following. The
e-e correlation potentialweff

c (r12) changes the Kohn-Sham
f into the physical one and must thus keep the information
on the one-electron density (which is the same in the two
systems) while turning on the e-e interaction 1/r12. In eqs
25-27 this information is approximately kept via the average
densitynj.

In scaled units, the Overhauser potential to first order in
R, to be used in eq 19, becomes

where, if we adopt the prescription of eqs 26 and 27,sjs )
31/3 + O(R) for the He series andsjs ) (3xπ)1/3 + O(R) for
the Hooke’s atom series.

Equation 23 with the potential of eq 28 can be evaluated
analytically as a function ofs12 and sjs for both series,
although the final expressions are cumbersome and will not
be reported here. The resultingf c

(1) for the He series is
shown in Figure 1, together with the corresponding scaled
quantity, Z-2fc(s/Z), for some finite Z. [Since f c

(1)(s) )
limzf∞ Z fc(s), and fc(s) ) Z-3fc(s/Z), the quantity to be
compared withf c

(1)(s) is Z-2fc(s/Z).] For finite Z we show
both the “exact” result26 and the approximate result9 obtained

with the Overhauser-type potential of eqs 25-27. We see
that theZ dependence of the short-range part offc is very
well captured by this simple approximation. Figure 1 also
suggests that theZ f ∞ limit of the short-range part offc is
well described by this approach. In Figure 2 we show the
result for f c

(1) in the case of the Hooke’s series from the
Overhauser potential compared to the exact one, finding very
accurate agreement.

The KS and the correlation components off (1) are shown
in Figure 3 for both series. We see that in the case of the He
series the KS and the correlation parts have roughly the same
depth, while in the case of the Hooke’s series the correlation
part is much deeper than the KS one. This is due to the fact
that the KS part gives the change in the e-e distance
probability distribution only due to the first-order change in
the one-electron density. In the case of the Hooke’s series
the first-order change in the density is much smaller, since
the harmonic confining external potential is stronger than
the Coulombic one. Indeed, the functionø(s) of eq 8 in the
case of the He series is about twice the one for the Hooke’s
atom series.

Figure 1. The correlation part of the intracule density, fc ) f
- fKS, divided by Z2, as a function of the scaled variable s12

) Zr12 for the He isoelectronic series. The “exact” results are
obtained from the accurate wavefunctions of ref 26. Ap-
proximate results at finite Z using the “Overhauser model” are
taken from ref 9. The Z ) ∞ result corresponds to eq 23 with
the potential of eq 28.

Figure 2. The correlation part of the first-order intracule, fc-
(s12) [see eq 12], for the Hooke’s series. The exact values
are compared with the results from the Overhauser-type
approximation of eq 28.

Figure 3. The decomposition of the first-order intracule
intracule density f (1)(s12) [see eq 12]: the Kohn-Sham part
and the correlation part.

weff
c (r12) ≈ ( 1

r12
+

r12
2

2rjs
3

- 3
2rjs)θ(rjs - r12) (25)

rjs ) (4π
3

nj)-1/3
(26)

nj ) 1
N∫ dr n(r )2 (27)

weff
c(1)(s12) ≈ ( 1

s12
+

s12
2

2sjs
3

- 3
2sjs)θ(sjs - s12) (28)
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4. Adiabatic Connection and Correlation
Energy
The APD f c

(1)(s12) gives the correlation contribution to
second order to the expectation〈Vee〉 of the Coulomb
electron-electron repulsion operator,Vee ) 1/r12

where

and

Our f c
(1) from the Overhauser potential give〈Vee〉c

(2) )
-0.10256 Ha for the He sequence (to be compared with the
exact27 value, -0.09333 Ha) and〈Vee〉c

(2) ) -0.10377 Ha
for the Hooke’s series (to be compared with the exact19,20

value, -0.09941 Ha). The error is thus 9 mH for the He
series and 4 mH for the Hooke’s series.

The correlation energy can then be otbained via the
adiabatic connection formula of eq 1, which forEc

(2) reads

where f c
λ(1) is the first-order correlated part off for the

system with interactionRwλ(s12). If we were able to calculate
the exactf c

λ(1) for any wλ, the resultingEc
(2) from eq 31

would be independent of the choice ofwλ. However, when
we deal with approximations, we can obtain better results
with some choices rather than others.

As in ref 9, we build an Overhauser-type potential along
the adiabatic connection as

where, in scaled units, if we stick with the choice of eqs 26
and 27,nj ) (4π)-1 for the He series andnj ) (4π3/2)-1 for
the Hooke’s series. The idea behind eq 32 is that the average
densitynj (and thus the averagesjs) is kept fixed to mimic
the fact that the one-electron density does not change along
the adiabatic connection while we turn on the e-e interac-
tion.

4.1. Linear Adiabatic Connection. If we set wλ(s12) )
λ/s12, eq 32 simply gives the Overhauser potential of eq 28
with a multiplying factorλ in front. From eq 23, we see that
this corresponds toEc

(2) ) 〈Vee〉c
(2)/2, as in the exact case.

I.e., the simple approximation of eq 32 has the correct scaling
behavior in theR f 0 limit. Our result forEc

(2) with the
linear adiabatic connection thus gives an error of 4.5 mH
for the He series and 2 mH for the Hooke’s series.

4.2. The “erf” Adiabatic Connection. A choice forwλ

that separates short- and long-range effects is the “erf”
adiabatic connection,9,28-33 wλ(s12) ) erf(λs12)/s12, for which
eq 31 becomes

The Overhauser-type potential corresponding to this interac-
tion is reported in the appendix of ref 9. For the He
isoelectronic series with 2e Z e 10, the Overhauser-type
approximation combined with the “erf” adiabatic connection
gives9 correlation energies with errors within 4 mH, better
than the linear adiabatic connection that gives errors within
10 mH.

In the weakly correlated limit, instead, we obtained, via
eq 33, Ec

(2) ) -0.041 Ha for the He series andEc
(2) )

-0.046 Ha for the Hooke’s series. The errors with respect
to the exact values, 6 mH and 4 mH, respectively, are thus
slightly worse than those obtained with the linear adiabatic
connection.

5. The LDA Failure in the High-Density
Limit: An Analysis from the Intracule
Density
As a further element of comparison, we also computed the
first-order f c

(1)(s12) within the local-density approximation
(LDA)

wheregc(r12; rs) is the pair-correlation function of the uniform
electron gas34 of densityn ) (4πrs

3/3)-1, and

With these definitions, the density parameterrs of the uniform
electron gas is locally proportional toR. We have numerically
evaluated the right-hand-side of eq 34 at smaller and smaller
R (i.e., at larger and largerZ andk), for 0 e s12 e 5. As R
decreases, the results tend to a well-defined curve, shown
in Figures 4 and 5, together with the result from the
Overhauser model (He series) and the exact result (Hooke’s
series).

Since, as shown by eq 34, theR f 0 limit corresponds to
the rs f 0 limit of the uniform electron gas pair-correlation
function gc, to better understand the LDA result forfc we
now analyze more in detail the high-density behavior ofgc.
This analysis extends and completes the one done in ref 35.
When rs f 0, the short-range part ofgc scales as

where the functiongc
(1)(x) does not depend explicitly onrs

and has been computed by Rassolov et al.36,37It is accurately
recovered by the modelgc of ref 34 that we have used in
the evaluation of eq 34. The scaled variablex is locally
proportional to the scaled variables12 [see eq 35]. Equation
36 thus shows that the short-range part (corresponding to
values of the scaled variablex not too large) ofgc in the rs

f 0 limit has a scaling similar to the one of the He and

〈Vee〉 ) 1

R2
[R〈Vee〉

(1) + R2〈Vee〉
(2) + O(R3)] (29)

〈Vee〉
(2) ) 〈Vee〉KS

(2) + 〈Vee〉c
(2)

〈Vee〉c
(2) ) ∫0

∞
4π s12 fc

(1)(s12)ds12 (30)

Ec
(2) ) ∫0

λphys dλ ∫0

∞
ds12 4π s12

2 fc
λ(1) (s12)

∂wλ(s12)

∂λ
(31)

weff
c,λ(s12; sjs) ) wλ(s12) - ∫|s|esjs

njwλ(|s - s12|) ds (32)

Ec
(2) ) ∫0

∞
dλ ∫0

∞
ds124πs12

2 fc
λ(1)(s12)

2

xπ
e-λ2s12

2
(33)

f c
(1)LDA(s12) ) lim

Rf0

1
R ∫ n(0)(s)2

2
gc(k̃F(s)s12; Rr̃s(s)) ds (34)

k̃F(s) ) [3π2n(0)(s)]1/3, r̃(s) ) [4π
3

n(0)(s)]-1/3
(35)

gc(x, rs f 0) ) rsgc
(1)(x) + O(rs

2 ln rs), x ) r12/rs (36)
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Hooke’s series in theR f 0 limit. This is also reflected by
a good performance of LDA fors12 j 1, as shown by Figures
4 and 5.

However, the high-density electron gas is an extended
system with important long-range correlations that are not
present in finite systems like atoms and molecules. In fact,
the scaling of eq 36 is not valid whenx . 1: it has been
shown that the long-range part ofgc scales as34,38,39

whereV is another scaled variable,V ) xrs x, which is thus
locally proportional toxRs12. The functionh(V) has the
following asymptotic behaviors

which are also correctly included in the modelgc of ref 34.
Whenrs f 0 (i.e.,R f 0), even for very largex the scaled
variableV is small, so that the long-range (x . 1) behavior
of gc is more and more dominated by the smallV part of
h(V), i.e., it behaves more and more likeV-2 rather than like
V-4. It is this increasing dominance of the “short-range
component of the long-range part” that causes the∝ log (rs)
behavior in the correlation energy per electron of the high-
density electron gas and thus the divergence of the LDA
correlation energy in the large-Z and large-k limit of the He
and Hooke’s atom sequences (see, e.g., ref 40). In fact, when
Z f ∞ (or k f ∞), the high-density long-range behavior of
gc affects the long-range part off c

LDA(s12) in eq 34.
The small-V behavior∝ V-2 of the functionh(V) is related

to the 1/r12 divergence of the Coulomb potential atsmall

r12. For this reason, the∝ log (rs) high-density behavior of
the correlation energy is still present in a uniform electron
gas with screened (or short-range only) Coulomb interaction
(e.g.,41 erfc(λr12)/r12), while it is absent in an electron gas
with long-range-only interaction (e.g.,42,43 erf(λr12)/r12).

6. Conclusions
We have computed the intracule density and the correlation
energy for the high-density (weakly correlated) limit of the
He and Hooke’s atom isoelectronic series via an approach9-11,21

based on an “average pair density functional theory”
(APDFT) and inspired by the seminal work of Overhauser.12-16

Unlike the currently available correlation energy functionals
analyzed in ref 17, the APDFT approach gives accurate
results for both series. In its present formulation, the APDFT
approach works well for two-electron systems and for the
uniform electron gas. Its extension to many-electron systems
of nonuniform density is a big challenge, and we are
presently exploring several different paths to achieve this
ambitious goal.11

We have also analyzed the LDA failure in the same weakly
correlated limit of the He and Hooke’s atom series, in terms
of the long-range part of the intracule density. The results
of Katriel et al.17 show that higher-order functionals such as
PBE44 and TPSS45 can reasonably fix the LDA problems in
the case of the He isoelectronic series but are much less
satisfactory for the Hooke’s atom sequence, yielding a wrong
scaling in thek f ∞ limit (PBE) or a correct scaling with
an error of about 40% on the asymptotic value of the
correlation energy (TPSS). As stressed by Katriel et al.,17

these differences in performances for the two series raise

Figure 4. The correlated part of the intracule density,
f c

(1)(s12), of order R ) 1/Z for the He series [see eq 12]: the
present calculation is compared with the LDA approximation
(panel a). Panel b shows the same quantities multiplied by
4πs12: the integral under each curve gives the correlation part
of the second-order contribution to the expectation value 〈Vee〉,
which diverges in the case of LDA.

gc(x . 1, rs) f rs
2h(V) (37)

h(V , 1) ∝ V-2, h(V . 1) ∝ V-4 (38)

Figure 5. The correlated part of the intracule density,
f c

(1)(s12), of order R ) k-1/4 for the Hooke’s atom series [see
eq 12]: the exact result is compared with the LDA approxima-
tion (panel a). Panel b shows the same quantities multiplied
by 4πs12: the integral under each curve gives the correlation
part of the second-order contribution to the expectation value
〈Vee〉, which diverges in the case of LDA.
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serious doubts on the universality of currently available
correlation energy functionals. The accuracy of the results
obtained via the APDFT approach for both series suggests
that the effort toward its generalization to many-electron
systems of nonuniform density could be really worthwhile.

Appendix: f KS
(1)(r12) for the He Isoelectronic

Series
For the He isoelectronic series eq 13 corresponds to

whereγ and the function Ei have been defined after eq 9.
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CT700019H

fKS
(1)(x) ) 1

864π x
{4e-4x[-41 + 3 x (1 + 9x)] +

81e2x(x - 1)[Ei(-6x) - Ei(-4x)] + e-2x[164 +
27(3+ x(9 + 4x(3 + 2x)))[Ei(-2x) - γ - log(x)] +
3x [-163+ 6x (15 + x(7 + 10x)) - 27 log(4/3)]-

162 log(2)+ 81 log(3)]} (39)
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