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Abstract

We discuss and clarify a simple and accurate interpolation scheme for the spin-resolved elec-
tron static structure factor (and corresponding pair correlation function) of the 3D unpolar-
ized homogeneous electron gas which, along with some analytic properties of the spin-resolved
pair-correlation functions, we have just published (Phys. Rev. B, in press). We compare our
results with the very recent spin-resolved scheme by Schmidt et al. (Phys. Rev. B 46 (1992)
12 497; 56 (1997) 7018; submitted for publication) and focus our attention on the spin-resolved
correlation energies and the high-density limit of the correlation functions. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The homogeneous electron gas is a model solid whose positive ionic charges are
smeared throughout the whole crystal volume to yield a shapeless, uniform positive
background (whence the nickname of jellium). The model, by ignoring the ionic lat-
tice which makes real materials di�erent from one another, allows the theorists to
concentrate on key aspects of the electron–electron interaction. It thus represents an
obvious limit for the inhomogeneous electron gas, and, through the density functional
theory (DFT) [1], its local density approximation (LDA) and other semi-local [2,3]
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and nonlocal [4] approximations, it links to a popular and very successful description
of real materials.
The pair-distribution functions g�1�2 (r1; r2) describe the spatial correlations between

electron pairs of prescribed spin orientations: the expected number of spin-�2 elec-
trons in the volume dV at r2, when another electron of spin �1 is at r1, is equal to
dN (r2�2|r1�1)=n�2 (r2)g�1�2 (r1; r2) dV , where n�(r) is the density of spin-� electrons. In
the spin-unpolarized jellium, the electronic spin density n↑(r)=n↓(r)=n=2=(8�r3s =3)−1
is uniform in space (i.e., independent of r), so g�1�2 (r1; r2) only depends on the distance
between the two electrons r = |r1 − r2|. Hartree atomic units are used throughout this
work. The static structure factor S(q) is an “experimental” quantity which gives a mea-
sure of the instantaneous density correlations in the system, and is directly related to
the Fourier transform of the pair-correlation function. For an unpolarized homogeneous
electron gas, after introducing the Fermi wavevector qF=(3�2n)1=3, the scaled variables
�=qFr and k=q=qF are often convenient. With these variables the spin-resolved static
structure factors are written as

S�1�2 (k; rs) = ��1 ; �2 +
2
3�

∫ ∞

0
d��2[g�1�2 (�; rs)− 1]

sin(k�)
k�

; (1)

the total pair-distribution function is equal to g = 1
2(g↑↑ + g↑↓), and the total static

structure factor to S = S↑↑ + S↑↓.
The pair-distribution functions of the uniform electron gas are a key ingredient in

the construction of semi-local and nonlocal density functionals [2–4]. At the densities
of interest for DFT calculations, the best estimate for the pair-correlation functions
and static structure factors 1 of jellium is given by quantum Monte Carlo simulations
(QMC) [5–7] which are available for a discrete set of interelectronic distances � (or
momentum transfer k) and densities rs. In a recent work [8] we have presented simple
functional forms for the spin-resolved pair-correlation functions which depend upon
� and rs, are analytic and closed-form both in real and reciprocal space, ful�ll most
of the known properties of their exact counterparts, and contain some free paramaters
that have been �xed by a two-dimensional (�; rs and k; rs) �t to the new QMC data
[7], thus yielding very accurate and reliable functions in the relevant density range
0:1. rs610. As a byproduct, we also obtained accurate spin-resolved correlation en-
ergies which ful�ll the exact high-density limit by construction [8]. In Section 2 we
summarize the small-� (k) behavior of g�1�2 (S�1�2 ) together with the corresponding
large-k (�) behavior of S�1�2 (g�1�2 ), and we discuss and clarify some points, especially
Eq. (12) of Ref. [8]. Section 3 is devoted to a brief comparison of our results with
the new spin-resolution [9] of the Perdew–Wang function [10,11], and in Section 4 the
corresponding spin-resolved correlation energies are discussed.

1 The pair-correlation functions and static structure factors are independently extracted by quantum Monte
Carlo simulations [5,6].
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2. Behavior of the spin-resolved correlation functions for small and large arguments

The pair-distribution function g = gex + gc (and correspondingly the static structure
factor) can be divided into an exchange-only contribution gex(�) (given by the Hartree–
Fock approximation) and a Coulomb-correlation contribution gc(�; rs), which, in turn,
can be split into its ↑↓ and ↑↑ parts, gc = 1

2(g
c
↑↓ + g

c
↑↑). The leading terms of g

c
�1�2 ,

Sc�1�2 , gex, Sex and of the total functions for small and large arguments are summarized
below.

g(�→ 0) S(k → ∞) g(�→ ∞) S(k → 0)

corr: ↑↓ a
(
1 +

�
qF

)
− 1 − 4

3�qF
a
k4

9
4

(
1
�4
+
1
�6

)
−3
8
k +

k2q2F
4!p

+
k3

32

corr: ↑↑ b
(
�2 +

�2

2qF

)
− �2

5
8
�qF

b
k6

9
4
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1
�4
+
1
�6

)
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8
k +

k2q2F
4!p

+
k3

32

exch:
1
2
+
1
10
�2 1 1− 9

4

(
1
�4
+
1
�6

)
3
4
k − k3

16

total
a
2

(
1 +

�
qF

)
1− 4

3�qF
a
k4

1− 3d 6!
�8

k2q2F
2!p

+ ck4 + dk5

Here !p =
√
3=r3s is the classical plasma frequency and the constants a, b, c and d

are not known. The small-� (and corresponding large-k) behavior of the correlation
functions is well known [12] from the many-body Schr�odinger equation when two elec-
trons approach each other (cusp conditions). The small-k (and corresponding large-�)
behavior of the ↑↓ and ↑↑ correlation functions seems, instead, to be less known [8].
It can be determined by means of the random phase approximation (RPA) (see e.g.
Ref. [13]), which is exact in the k → 0 limit, as follows. The RPA only takes into ac-
count direct processes, i.e., processes that occur for both parallel- and antiparallel-spin
pairs. Thus, for an unpolarized gas, the RPA ↑↓ and ↑↑ correlation functions are equal.
This simple consideration, together with the well-known small-k behavior of the total
S, q2Fk

2=2!p, tells us that, as k → 0, the linear term 3k=4 of Sex must be cancelled
50% by Sc↑↓ and 50% by Sc↑↑. The same argument can be applied to the −k3=16
term of Sex; in fact, no term ˙ k3 must appear in the total S, whose long-wavelength
behavior is determined by the plasmon contribution and by the single-pair and multipair
quasiparticle–quasihole excitation contributions, proportional to k5 and k4, respectively
[13,14]. While the leading −3k=8 term of Sc�1�2 (which corresponds to the large-�
term 9

4�
−4) and the plasmon contribution ˙ k2 must hold beyond RPA, the k3=32

term (which corresponds to the large-� term 9
4�

−6) holds for the exact Sc�1�2 in the
high-density limit, but its validity at lower densities must be veri�ed. Note also that
the k5 term in the k → 0 expansion of the total static structure factor implies that the
total g behaves like �−8 when � → ∞. The functional forms proposed in Ref. [8]
exactly ful�ll all of the above analytic constraints.
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Fig. 1. Parallel-spin contribution to the pair-correlation function (left), and antiparallel-spin contribution to
the static structure factor (right) for rs=4. Solid line: functions from Ref. [8]; dashed line: new spin-resolved
PW model [9–11]; crosses: QMC data [7].

3. Spin-resolved correlation functions

In Ref. [8] we compared our correlation functions with the widely used Perdew–
Wang (PW) [10,11] model. The PW function turned out not to be accurate in its
spin-resolved version, mainly because it does not ful�ll the exact k → 0 limit of Sc�1�2 .
Based on our work, Schmidt et al. [9] have recently proposed a new spin resolution
of the PW model, obtained by imposing this exact limit. Such revised PW function
represents a considerable improvement over the original one, and works very well for
rs. 2, both in real and reciprocal space. At lower densities, however, our functions
[8] provide a better interpolation of the QMC data [7], as shown, for example, by
Fig. 1, where gc↑↑ and S

c
↑↓ for rs = 4 obtained from our scheme [8], the revised PW

model [9] and QMC simulations [7] are reported. We have checked that, as rs increases,
the discrepancy between revised PW and QMC data becomes more pronounced. The
reason of such increasing discrepancy with descreasing density can be explained as
follows. The revised ↑↑ PW function for the unpolarized gas is built up by rescaling
the pair-correlation function of the fully polarized gas in such a way that the exact k →
0 limit of Sc↑↑ is ful�lled. As a result, the parallel-spin contribution to correlation tends
to be overestimated (and consequently the ↑↓ part is underestimated). Correlations are
highly dominated by antiparallel-spin interactions, where available (see e.g. Ref. [13]),
and hence simple scaling arguments which connect correlations in the fully-polarized
gas (where ↑↓ interactions are totally absent) and ↑↑ correlations in the unpolarized
gas (where ↑↓ interactions are present and tend to dominate the electronic correlations)
will provide less and less reliable results at lower and lower densities, as the role of
Coulomb correlation with respect to exchange becomes more and more important. The
same argument applies to the correlation energy, as we shall see in the next Section 4.
Note that the overestimate of the PW ↑↑ pair-correlation function makes the total
(exchange + correlation) parallel-spin pair-distribution function be slightly negative
near r=0 for densities rs& 6. Nonetheless, the new scaling law proposed by Schmidt
et al. [9] does much better than any previous one.
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Fig. 2. Parallel-spin contribution to the correlation energy obtained from di�erent scaling guesses compared
to our interpolation scheme (solid line, Ref. [8]). Units are Hartrees per electron.

4. Spin-resolved correlation energies and the high-density limit

Correlation energy: The spin-resolved contributions to the correlation energy are
de�ned as

�c�1�2 =
q2F
3�

∫ rs

0
dr′s

∫ ∞

0
d��gc�1�2 (�; r

′
s) (2)

and hence �c = �c↑↓ + �
c
↑↑. The corresponding exact high-density limit is recovered

by applying the same argument which yielded the k→ 0 expansion of Sc�1�2 . In the
framework of RPA (see e.g. Ref. [13]), in fact, one obtains for the unpolarized gas
�c↑↓ = �

c
↑↑ at any rs. Since in the rs → 0 limit RPA is exact, we have

lim
rs→0

�c↑↓ = lim
rs→0

�c↑↑ =
(1− ln 2)
2�2 ln rs + O(r0s ) : (3)

Beyond RPA (beyond orders ln rs) �c↑↓ and �
c
↑↑ are not equal because of higher-order

exchange terms which mainly lower the ↑↑ correlation energy. The spin-resolved cor-
relation energies presented in Ref. [8] are the best-to-date estimate of �c�1�2 , since they
are obtained by integrating the corresponding QMC pair-correlation functions [7] in-
terpolated by our gc�1�2 and S

c
�1�2 models which also incorporate the exact behavior at

small and large arguments. Moreover, our �c�1�2 ful�ll the high-density limit of Eq. (3).
Previous estimates of �c↑↑ were obtained by scaling the correlation energy of the fully
polarized gas. The most widely used scaling laws are the Stoll et al. [15,16] and the
Perdew–Wang [10,11], which is now available in its revised form given by Schmidt
et al. [9]. In Fig. 2 we compare our �c↑↑ with these three schemes. It is apparent that
the revised PW gives the best result, even if it does not ful�ll the high-density limit of
Eq. (3). As a consequence, the revised PW underestimates by ∼ 22% the ↑↑ correla-
tion energy at rs = 0. As expected from the corresponding ↑↑ pair-correlation function
(see Fig. 1), at densities rs& 2 the revised PW overestimates �c↑↑ by an amount which
increases with rs (e.g. 3% at rs = 3, 21% at rs = 10). Again, we see the failure of
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simple scaling laws which try to connect correlations in the fully polarized gas and ↑↑
correlations in the unpolarized gas.
High-density limit of the pair-correlation functions: It is also wortwhile to discuss

some points about the link between the high-density limit of the pair-correlation func-
tion and the rs → 0 limit of Eq. (3). Rassolov et al. [17] have recently computed the
rs → 0 limit of gc=rs, which turned out to be a well-de�ned, rs-independent, function.
For di�erent reasons, neither PW [9–11], nor our pair-correlation function [8] ful�ll
this limit. As pointed out in Ref. [8], our simple functional forms do not reconcile
the known high-density limit of the pair-correlation functions at zero interelectronic
distance [18,19] with Eq. (3). In this respect, the functional form used by PW [10,11]
is such that when the exact k → 0 limit of Sc�1�2 is imposed to it, Eq. (3) is automat-
ically violated. The PW spin-resolved version, thus, su�ers from a di�erent problem
than ours. In summary, although major steps forward have been achieved in this area
by Refs. [8,9], none of the existing models ful�lls all the known properties at rs → 0,
and further improvements are needed in this limit.

5. Conclusions

In this work we have clari�ed the behavior of the spin-resolved pair-correlation
function and static structure factor of the unpolarized uniform electron gas for small
and large arguments. We have then compared the two best-to-date models for these
functions [8,9], pointing out their advantages and drawbacks, and we have discussed
the corresponding spin-resolved correlation energies. We found that the functions in
Ref. [8] provide a better �t to the QMC data [8], both in real and reciprocal space,
and provide the best-to-date estimate of the spin-resolved correlation energies. At very
high density, however, even the forms proposed by Refs. [8,9] are inadequate, and
further work is needed. It should be also kept in mind that in this high-density limit
the non-relativistic Hamiltonian, on which the whole theory is based, is no longer valid,
and relativistic corrections or a fully relativistic treatment would be required [20,21].
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