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By virtue of its computational efficiency, Kohn-Sham (KS) density functional theory (DFT) is the method of 
choice for the electronic structure calculations in computational chemistry and solid-state physics. Despite its 
enormous successes, KS DFT’s predictive power and overall usefulness are still hampered by inadequate 
approximations for near-degenerate and strongly-correlated systems. Crucial examples are transition metal 
complexes (key for catalysis), stretched chemical bonds (key to predict chemical reactions), technologically 
advanced functional materials, and manmade nanostructures.   
I aim to address these fundamental issues, by constructing a novel framework for electronic structure 
calculations at all correlation regimes. This new approach is based on recent formal developments from my 
group, which reproduce key features of strong correlation within KS DFT, without any artificial symmetry 
breaking. My results on the exact infinite-coupling-strength expansion of KS DFT will be used to endow that 
theory with many-body properties from the ground up, thereby removing its intrinsic bias for weak 
correlation regimes. 
This requires novel combinations of ideas from three research communities: chemists and physicists that 
develop approximations for KS DFT, condensed matter physicists that work on strongly-correlated systems 
using lattice hamiltonians, and mathematicians working on mass transportation theory. The strong-
correlation limit of DFT enables these links by defining a natural framework for extending lattice-based 
results to the real space continuum. On the other hand, this limit has a mathematical structure formally 
equivalent to the optimal transport problem of mathematics, enabling adaptation of methods and algorithms. 
The new approximations will be implemented with the assistance of an industrial partner and validated on 
representative benchmark chemical and physical systems. 
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Section a: Extended Synopsis of the scientific proposal 
 
The electronic-structure problem 
Accurately predicting electronic structure from first principles is crucial for many research areas such as 
chemistry, solid-state physics, biophysics, materials science, and biochemistry. In principle, the electronic 
structure is determined by the Schrödinger equation, which can only be solved in practice for few electrons. 
Thus, chemists and physicists have developed approximate methods, most importantly, wave-function 
methods and density-functional-theory-based methods. The former are more accurate, but computationally 
very demanding, and for this reason limited as far as system size is concerned. 
 

Density Functional Theory: successes... 
Kohn-Sham (KS) Density functional theory (DFT)  [1]  has been a real breakthrough for electronic structure 
calculations. KS DFT uses the one-electron density and a non-interacting wave function as basic variables, 
much simpler quantities than many-electron wave-functions, allowing to treat realistic large systems. 
Together with its extension to time-dependent (TD) phenomena (TDDFT)  [2], KS DFT made it possible to 
study a huge number of chemical, physical, and biological processes, with a large impact on different fields 
(inorganic and organic chemistry, solid state physics, materials science, surface physics, biochemistry and 
biophysics). 
The key idea of KS DFT is an exact mapping  [3] between the physical, interacting, many-electron system 
and a model system of non-interacting fermions with the same density, allowing for a realistic treatment of 
the electronic kinetic energy. All the complicated many-body effects are incorporated in the so-called 
exchange-correlation (xc) energy functional. Although, in principle, the exact xc functional is unique (or 
“universal”), it needs to be approximated, and there is no well defined path to do that.  Mainstream strategies 
follow the idea of a “Jacob’s ladder”  [4], based on an ansatz for the dependency of the xc functional on the 
relevant “ingredients”, increasing the complexity of the approximations in a hierarchical manner (local 
density, local density gradients, local KS kinetic energy, KS occupied orbitals, up to the KS virtuals). A 
(sometimes very large) number of parameters can be also introduced and fitted to specific data sets  [5]. The 
scientific community who tries to improve the approximate KS xc functionals is relatively small, but it has 
an enormous potential impact because of the huge number of DFT users: the most successful approximations 
are applied to a large variety of problems in chemistry and physics, and are used every year by thousands of 
scientists in different research areas. 
 

... and failures 
Despite all these efforts, present-day KS DFT is not yet able to accurately capture the physics of systems in 
which electronic correlation plays a prominent role. For example, we see often that approximations working 
well for main group chemistry fail for transition metals (which are the workhorse of catalysis). More 
generally, for systems containing d and f elements, spin- and spatial-symmetry breaking occurs erratically in 
DFT, and are very sensitive to the functional chosen. When many symmetries are broken, it is difficult to 
keep the potential energy surfaces continuous. Another consequence of symmetry breaking is that spin 
densities are not correctly described, resulting in wrong characterizations of several properties  [6,7]. The 
breaking of the chemical bond (key to predict chemical reactions) is also characterized by strong ("static") 
correlation and is highly problematic for the current approximations  [8]. Other important examples are given 
by the delicate physics of functional materials and manmade nanostructures  [6,7,9,10]. These inherent 
difficulties can severely (and sometimes in an unpredictable way) hamper calculations, depending on their 
relative importance with respect to other effects that are better captured by the available approximate 
functionals  [10]. KS DFT electronic structure calculations are important building blocks to model systems 
with multiscale approaches. Thus, their errors may affect in a drastic way the final results. Addressing the 
fundamental problems of KS DFT can make the difference between using computations to understand 
experiments (as it is mainly done nowadays) and to be able to really predict them. 
This proposal aims at addressing the fundamental DFT problems inherent to the description of 
strongly-correlated systems following a physically and mathematically sound strategy radically 
different from mainstream ones. 
 

A rigorous starting point: The exact strong-correlation limit of DFT 
KS DFT is based on a system of non-interacting fermions, treating the electron-electron interactions in an 
approximate way. Current approximations work when the physics of the true, interacting, system is not too 
different than the non-interacting one of Kohn and Sham: for these cases the “Jacob’s ladder” strategy is able 
to accurately capture the (relatively small) xc effects. Strongly-correlated systems, however, are radically 
different from non-interacting ones  [11]. In these cases, the xc functional needs to be a drastic correction, 
and traditional strategies have failed so far. 
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My research efforts of the last four years, as group leader of a project mainly funded by the Dutch career-
grant VIDI, have been mainly devoted to develop a rigorous starting point to build this drastic 
correction, which, as we showed, works in prototypical cases. This rigorous starting point is the exact xc 
functional in the limit in which correlation becomes infinitely strong, called “strictly-correlated electrons” 
functional (SCE). The SCE functional has a highly non-local dependence on the density that encodes new 
information with respect to the traditional ingredients of the “Jacob's ladder” approach. Despite this high 
non-locality, I have recently found an elegant and powerful shortcut to compute the SCE functional 
derivative  [12], yielding a one-body multiplicative Kohn-Sham potential that is truly able to make non-
interacting electrons reproduce key features of strongly-correlated ones, without artificially breaking any 
symmetry, as shown by our results on model semiconductor quantum wires and quantum dots  [13,14]. 
I have also extended the SCE formalism to fractional electron numbers in a rigorous way  [15], and shown 
that the SCE xc functional displays a derivative discontinuity at integer electron numbers in low-density 
systems even in a spin-restricted framework, a key property to describe the ground-state of strongly-
correlated systems, as well as important applications such as quantum transport  [9,10,16], missed by all the 
available approximate xc functionals  [9,10]. 
The importance of these results is well recognized in the fundamental DFT scientific community: I have 
been invited to present them at most of the key conferences in the field, and the xc SCE functional is 
mentioned in the most recent DFT review articles as a promising new route  [8,9].   
Another important result I have obtained, crossing disciplinary boundaries, is the reformulation of the SCE 
functional as a mass transportation theory (or optimal transport) problem, an important field of mathematics 
and economics  [17]. This reformulation paves the way to a cross-fertilization between two very different 
research areas, and has already triggered a huge interest in the mass transportation theory community, as 
shown by the increasing number of groups that are publishing on the subject  [18-20] and by the many 
invitations I have received to speak at optimal transport and mathematics conferences. 
The goal of this ERC proposal is to transform these rigorous results into a complete framework for 
electronic structure computations, working at all correlation regimes, and for a vast range of chemical 
and physical systems. 
 

From the exact strong-coupling expansion to functionals for chemistry and solid-state physics: Challenges 
Interesting systems in chemistry and solid-state physics, however, are more challenging for the SCE 
functional than the low-density nanostructures I have treated so far, because the kinetic correlation energy 
and the electron-electron repulsion often have similar importance. This requires corrections to the SCE 
functional, which are one of the objectives of this proposal, and will be built in a rigorous way by importing 
ideas from different research areas in a novel way, as detailed below. 
The other big challenge is that the physics of strong correlation encoded in the highly non-local density 
dependence of the SCE functional does not come for free: the SCE problem is sparse but nonlinear, and a 
general algorithm for its evaluation following our original formulation is still an open problem. Progress has 
been made very recently by a group in Berkeley  [20] using our reformulation of the SCE functional as a 
mass transportation theory problem  [17], although the procedure is still cumbersome and needs further 
developments.  The transformation of the SCE formalism into a practical xc functional is the other main 
pillar of this research proposal.  
 

Goal and Objectives 
In order to achieve the goal of an accurate, computationally affordable, ab initio description of the ground-
state energy and other properties of strongly-correlated many-electron systems, my team and I will attain the 
following objectives: 

1. Add higher-order corrections to (go beyond) the KS SCE approach, especially introducing the spin 
dependence into the xc SCE functional 

2. Develop dedicated algorithms to evaluate the SCE functional in the general three-dimensional case. 
3. Construct controlled approximations of the results of objectives 1 and 2 to increase the 

computational efficiency. This is necessary for very large systems, and it can also be used in general 
in case the exact implementation of objectives 1 and 2 turns out to be computationally too 
demanding. 

4. Test the new approximate functionals and algorithms of Objectives 1-3 in representative chemical 
and physical benchmark systems. 

 
A new interdisciplinary approach 
In pursuing the end goal of this project, I will unite efforts from research fields that, although aiming at 
similar objectives, traditionally (with few exceptions) keep a distance from each other: the chemistry/physics 



Gori-Giorgi Part B1 corr-DFT  
 

 4 

community that develops xc functionals and kernels for DFT and TDDFT, and the physics community that 
develops strongly-correlated techniques in the context of lattice hamiltonians. As I will explain in detail in 
the Methodology part, this will be possible because the KS SCE provides a new framework to import results 
from lattice hamiltonians into the DFT real-space “continuum”.  Moreover, as already mentioned, the SCE 
theory has a mathematical structure formally equivalent to an optimal transport (or mass transportation 
theory) problem  [17]. This link will be potentiated and exploited in this project, both for the algorithmic part 
and for the construction of corrections to SCE.  
I have designed two parallel strategies: a "top-down" and a "bottom-up" approach synergistically combining 
chemistry, physics and mathematics. For the top-down approach, my team and I will develop and implement 
the exact SCE (and beyond) functionals and, if needed, make approximations at a later stage. For the bottom-
up approach, we will directly begin with approximations inspired to the SCE form and learn by 
implementing and testing them. These two complementary strategies reinforce each other, as schematically 
shown in Fig. 1. 
In practice, in the top-down strategy I will use strongly-correlated-electrons techniques from lattice 
hamiltonians and mass transportation theory ideas to design corrections to KS SCE (Objective 1). Mass 
transportation theory will be also crucial for the algorithmic part (Objective 2). In the bottom-up strategy I 
will build approximate functionals inspired to the SCE form and to the higher-order terms of Objective 1 and 
combine them with gradient corrections (and beyond) specifically designed (Objective 3) and I will 
extensively test them (Objective 4).  
I propose to create and lead a multidisciplinary research group of 3 graduate students and 2 postdoctoral 
associates with expertise in the three relevant research areas, embedded into several collaborations at the 
local and international level, as described below, where the feasibility of the objectives is also addressed. 

 
Objective 1: Beyond KS SCE through a new 
merging of strong-correlation techniques and KS 
DFT 
Team member: 1 PhD student  [Focus Area: 
Physics]   
International Collaborations: J. Lorenzana (Physics, 
Rome "La Sapienza", Italy), G. Vignale (Physics, 
University of Columbia Missouri, USA) 
A sort of "first-order" correction beyond SCE has 
been already formulated by myself and my 
coworkers in terms of local quantum fluctuations  
[21]. However, this correction does not distinguish 
between different spin states, which are taken into 
account only in the KS kinetic energy, but not in the 
xc SCE functional. Instead, for the delicate physics 
and chemistry of strongly-correlated materials and 
nanoscopic systems, the subtle interplay of the spin 
state and of correlation needs to be captured by the 
xc functional. The SCE functional is an infinite 
superposition (characterized by a three-dimensional 
single collective variable r) of configurations of 
localized electrons, which allows us to define, for 
each r, a lattice model with suppressed double 

occupation. Thus, we may construct correcting terms in the same fashion as it is done with lattice 
hamiltonians, exporting the main concepts to the continuum (here the word “continuum” is used to stress the 
difference with lattice formulations). This can be done by computing magnetic exchange and superexchange 
corrections as a function of the collective variable r. The needed overlap integrals can be obtained from the 
quantum fluctuation SCE corrections [21]. We will start by calculating exact magnetic exchange and 
superexchange corrections in simpler systems such as quasi-one-dimensional wires or electrons trapped in 
two dimensions, studying first smaller number of particles for which wave-function methods are viable for 
validation. These corrections will be then transformed into density functionals, making and testing 
approximations at various levels, and will then be implemented and extensively tested in interaction with the 
other objectives. This is conceptually very different from mainstream approaches in physics such as LDA+U 
or LDA+DMFT [22,23], which, instead, only correlate some of the LDA orbitals after a KS LDA calculation 
(introducing a basis dependence and double counting problems). 

Fig. 1: Schematic overview of how the project is 
organized, showing the objectives, their interactions 
and the "top-down" and "bottom-up" strategies 
towards the final goal. For each objective, the team 
members are also shown in blue. The international 
and local collaborations involved in each objective 
are reported in purple italics, together with the main 
input research areas/ideas. 
 

strongly-correlated
techniques

mass-transportation
theory

test/benchmark 
know-how in DFT

exact conditions: 
gradients, scaling, etc.

Objective 1
Beyond KS SCE 

Objective 2
Algorithms SCE

Objective 3
Approximate SCE 

+ corrections

Objective 4
Implementation

 & validation

Overall Goal
functionals for chemical and physical 

systems at all correlation regimes

to
p 

do
w

n
bo

tt
om

 u
p

1 postdoc (3 years)2 PhD students

1 postdoc (2.5 years)1 PhD student

Buttazzo
De Pascale
Friesecke

Lorenzana
Vignale

Baerends
Burke
Perdew
Savin
Teale

Visscher
SCM (ADF, BAND)



Gori-Giorgi Part B1 corr-DFT  
 

 5 

I will collaborate on this project with J. Lorenzana, who has long-standing experience with lattice 
hamiltonians, and G. Vignale, who will contribute to develop higher-order classical corrections to SCE. 
 

Objective 2: Algorithms for the exact SCE functional from mass transportation theory 
Team member: 1 postdoc (2.5 years)   [Focus Area: Mathematics] 
International Collaborations: G. Buttazzo and L. De Pascale (Mathematics, University of Pisa, Italy), G. 
Friesecke (Mathematics, Munich Technical University, Germany) 
Using concepts and collaborations in optimal transport (or mass transportation theory), I have reformulated 
the nonlinear SCE functional as a dual Kantorovich problem, consisting in a maximization under linear 
constraints   [17]. This paves the way to readapting algorithms developed in the framework of optimal 
transport to the SCE problem, which is the main task of this objective. Indeed, very recently, building on our 
results, a research group in Berkeley has implemented the first prof-of-principle Kantorovich dual solution to 
compute the SCE functional in arbitrary 3D geometry  [20]. We will start by trying to extend this approach 
to larger systems, reformulating the constraints in a problem given in a basis set, exploring several levels of 
approximations. Mass transportation theory can be also used to construct corrections to go beyond KS SCE 
(for example modifying the constraints), complementing the approach described in Objective 1. We will also 
pursue the Monge formulation, trying to develop algorithms and approximations based on the sparsity of the 
SCE problem. 
 

Objective 3: xc functionals from approximations inspired to the SCE form and its corrections 
Team members: 2 PhD students [Focus Area: Chemistry and Physics] 
International Collaborations: K. Burke (Chemistry & Physics, University of California Irvine, USA), J. P. 
Perdew (Physics, Temple University, Philadelphia, USA), A. Savin (Chemistry, CNRS Paris, France), A. 
Teale (Chemistry, University of Nottingham, UK) 
Local Collaborations, E. J. Baerends 
In parallel and in synergy with the efforts described in the previous two objectives, in which a rigorous 
treatment starting from strongly-correlated techniques and mass transportation theory will be used to develop 
corrections to KS SCE (making approximations at a later stage), in this part of the project I will start to 
directly build new approximate functionals by using a functional form inspired to the SCE, and to test them.  
The SCE functional has a non-local dependence on the density via one-body quantities called co-motion 
functions, which dictate the positions of all the electrons as function of a collective single-particle variable r. 
We will start by building approximate co-motion functions, constructing and testing new functionals with 
formal properties taken from the SCE theory: the new ingredient here is the non-locality brought in by the 
one-body approximate co-motion functions and the higher-order corrections to SCE developed in Objective 
1.  In order to accurately describe all correlation regimes, we will also combine functionals that work for 
moderate correlation with our approximate SCE functionals. This can be done by following two main 
strategies. The first one is based on a rigorous (and size-consistent) approach that avoids any double counting 
by a local interpolation along the adiabatic connection   [24], and will be pursued by collaborating with A. 
Teale and A. Savin, who can provide accurate reference results along the adiabatic connection for small 
systems  [25,26]. This will allow us to understand at the very basic level the accuracy of our construction. 
The quantities at weak correlation will be constructed from exchange functionals (exact or approximate  
[27]) and from a perturbative approach based on the pair density  [28,29]. 
The second strategy consists in building GGA's and metaGGA's functionals specifically designed to be 
combined with the xc SCE functional. The idea here is to retain the ability of (approximate) SCE to capture 
strong correlation while carefully adding to it the accuracy of standard semilocal functionals to describe 
moderate correlation regimes. In a way, this is a “Jacob’s ladder” with a starting point different than the 
usual one in KS: here the starting point is already able to accurately describe the non-local physics of very 
correlated systems. This will be done by readapting recent exact results on the gradient expansion  [30], in 
collaboration with J. P. Perdew and K. Burke.   
 

Objective 4: Testing the approximations in a systematic way 
Team members: 1 postdoc (3 years) [Focus Area: Chemistry] 
Local Collaborations: L. Visscher, SCM (industrial partner, responsible for the DFT codes ADF/BAND) 
The approximations and algorithms developed in Objectives 1-3 will be extensively tested and validated. 
This is actually far from obvious: validating and benchmarking functionals is, in many ways, a research field 
by itself. Especially in chemistry, the scientific community has acquired an enormous know-how on 
validating and benchmarking approximate functionals, producing an extensive set of reference data that I 
intend to fully exploit (for extensive reviews, see, e.g.  [5,6]). 
In general, the benchmark data used for validation can be either from experiment or, for simple enough 
systems, from wave-function calculations. However, we must be very cautious about wave-function results 
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when dealing with strongly-correlated systems, because even very high-level wave function calculations 
might not be reliable if static correlation is too complex (e.g., in transition metal chemistry). On the other 
hand, the comparison with wave-function calculations is generally more instructive because it allows for a 
deeper understanding of the problems inherent to our approximations. For example, we can extract quantities 
such as the density and the spin densities  [31], providing way more insight than the simple energetics. 
At the validating stage it is thus crucial to interact with chemists with experience in benchmarking 
functionals using wave-function techniques with the needed care, as well as experimental data sets carefully 
chosen. I will then collaborate, on this aspect, with the group of L. Visscher located in my same institution, 
who has a long-standing experience in benchmarking quantum chemical methods. The aim is to improve the 
KS DFT accuracy for systems containing d and f elements, for transition states, and, in general, for systems 
with multireference character. We will thus focus on test sets containing this kind of systems and quantities 
for validation.  
In a first stage, these accurate and controlled tests will provide a deep understanding of the key features of 
approximate SCE -based functionals needed to capture the relevant many-body effects and, at the same time, 
will allow for a careful analysis of the consequences of each approximate step done in the top-down strategy.  
In the final stage, validation using the plethora of available test sets, including chemical and physical 
systems, will be essential to deliver new reliable xc functionals  [5]. 
Regarding the practical implementation of new approximations into DFT codes, this project will benefit of 
the technical support of SCM (the spinoff company that develops and maintains the chemistry code ADF and 
the solid-state code BAND), located in my same host institution. 
At the end of this project I will thus deliver to the community a novel, reliable and accurate, instrument for 
electronic structure calculations. 
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2002 – 2004  Lecturer for Solid State and Molecular Physics in the master (“Laurea” ) program in 
   Physics – University of Rome “La Sapienza” (Italy) 
2013   Lecturer at the doctorate Han-sur-Lesse Winter School in Theoretical Chemistry and 
   Spectroscopy (Belgium) 
 
ORGANIZATION OF SCIENTIFIC MEETINGS 
2008 Co-organizer of the international workshop Density Functional Theory methods coupled to wave 
  function methods, University of Paris VI, France 
 
INSTITUTIONAL RESPONSABILITIES 
2011 – present  Member of the Public Relation Committee, Department of Chemistry,  
   VU University Amsterdam (The Netherlands) 
2012 – present  Member of the Trade Union Council, Faculty of Exact Sciences,  
   VU University Amsterdam (The Netherlands) 
2012 – present  Organizer of the Amsterdam Center for Multiscale Modeling (ACMM) Symposia 
   (see http://www.acmm.nl/) 
 
COMMISSIONS OF TRUST 
2014  Review panel member for the ECHO (Excellent Chemical Research) grants,  
  the Netherlands Organisation of Scientific Research (NWO) 
2014  Member of the search committee for a full professor in Biomimetic Synthesis for  
  Molecular Complexity, Department of Chemistry, VU University Amsterdam 
 
MAJOR COLLABORATIONS 

• K. Burke (Physics, University of California Irvine, USA): Gradient expansions and SCE 
• G. Buttazzo and L. De Pascale (Mathematics, University of Pisa, Italy): Optimal Transport and DFT  
• G. Friesecke (Mathematics, Munich Technical University, Germany): Optimal Transport and DFT 
• S. Kurth  (Physics, Basque Country University, Spain): Applications of SCE to Quantum Transport 
• J. Lorenzana (Physics, University of Rome "La Sapienza", Italy): Lattice hamiltonians and SCE DFT 
• S. Moroni (SISSA, Trieste, Italy): Functionals for range-separated DFT from QMC 
• J. P. Perdew (Physics, Temple University, USA): Functionals from exact constraints and SCE 
• E. Räsänen (Physics, Tempere University, Finland): Lieb-Oxford bound and SCE 
• S. M. Reimann (Physics, Lund University, Sweden): SCE applications: quantum dots, cold atoms,... 
• A. Savin  (Chemistry, CNRS, University Paris VI, France): SCE and range separation 
• M. Seidl (Phyiscs, University of Regensburg, Germany): SCE formalism 
• A. Teale (Chemistry, Nottingham University, UK): exact quantities along the adiabatic connection 
• C. J. Umrigar (Physics, Cornell University, USA): QMC results to benchmark SCE DFT 
• G. Vignale (Physics, University of Missouri, USA): higher-order corrections to SCE 

 
CAREER BREAKS 
September 2010 – January 2011   Maternity leave (6 months) 
January 2007 – June 2007    Maternity leave (6 months) 
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Appendix: All on-going and submitted grants and funding of the PI (Funding ID) 
 
On-going Grants 
 
Project Title Funding Source Amount Period Role PI Relation to this ERC CoG 

Time-dependent 
density functional 
theory for strongly-
interacting electrons 
 

EU – FP7 People 
Marie Curie Intra 
European Fellowship  
Physics Panel 
(Fellow: Dr. G. Lani) 

180 K€ 2014-2016 host 
scientist 
in charge 

Complementary: this IEF is 
devoted to the extension of 
SCE to the time domain and 
applications in quantum 
transport. 

The strictly-
correlated-electrons 
approach at work for 
Chemistry: Density 
Functionals for 
transition metals and 
accurate excitation 
energies 

The Netherlands 
Organisation for 
Scientific Research 
(NWO) - Free 
competition ECHO-
STIP 

260 K€ 
 

2013-2017 PI The ECHO-STIP funds one 
PhD student. A first  part (on 
transition metals) is a pilot for 
this ERC CoG. The second 
part (on excitation energies) is 
complementary. 

Strictly-correlated 
Density Functional 
Theory: methodology 
development and 
application to 
semiconductor 
nanostructures and 
ultracold atom gases 

EU – FP7 People 
Marie Curie Intra 
European Fellowship  
Physics Panel 
(Fellow: Dr. F. Malet) 

180 K€ 
 

2013-2015 host 
scientist 
in charge 

Complementary: this IEF is 
devoted to applications of 
SCE DFT to semiconductor 
nanostructures and to the 
extension of the formalism to 
ultracold atoms gases with 
dipolar interactions. 

Electronic density 
functional theory for 
strong-interacting 
systems 

The Netherlands 
Organisation for 
Scientific Research 
(NWO) – Innovational 
Research Incentives 
Scheme Vidi (Talent 
scheme) 

800 K€ 
 

2010-2015 PI The Vidi ends in April 2015. 
The ERC CoG builds on the 
formal results obtained during 
the Vidi. In the ERC CoG 
these formal results will be 
transformed into practical xc 
functionals for chemical and 
physical applications. 

 
 
Submitted Grants 
none
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Section c:  Early achievements track-record 
 

PUBLICATIONS 
 

I have published 50 articles in peer-reviewed international journals. My results have been featured in Physics 
(APS), have been reported in several textbooks and cited in many abstracts by authors that have built on 
them. My h-index on the ISI Web of Science is 20 (Notice: double last name, to be searched as gori-giorgi p 
OR gorigiorgi p OR giorgi pg) and the total number of citations is 1160.  
 
TEN REPRESENTATIVE PUBLICATIONS: HIGHLIGHTS  
 

1) Energy Density Functionals From the Strong-Coupling Limit Applied to the Anions of the He 
Isoelectronic Series,  
A. Mirtschink, C. J. Umrigar, J. D. Morgan III, and P. Gori-Giorgi, J. Chem. Phys. 140, 18A532 (2014) 
 - Invited article for the Special Topic issue  “Advances in Density Functional Theory”  
 

We have tested the xc SCE functional for the delicate physics of loosely bound anions, showing that it 
captures effects that are missed by the other functionals. We have also used accurate wave function results to 
validate our findings. 
 

2) The derivative discontinuity in the strong-interaction limit of density functional theory  
A. Mirtschink, M. Seidl, and P. Gori-Giorgi, Phys. Rev. Lett.  111, 126402 (2013) [citations: 3]            
 

We have generalized the exact strong-interaction limit of DFT to fractional electron numbers, showing that it 
displays the correct derivative discontinuity at integer electron numbers even in a spin-restricted framework. 
This is a key feature, missed by standard approximations, to describe the ground state of strongly-correlated 
systems and important applications such as quantum transport. 
 

3) Kohn-Sham density functional theory for quantum wires in arbitrary correlation regimes 
F. Malet, A. Mirtschink, J. C. Cremon, S. M. Reimann, and P. Gori-Giorgi, Phys. Rev. B 87, 115146 (2013); 
selected as “Editor’s suggestion” [citations: 8] 
 

We have extensively tested the performances of our new KS SCE self-consistent scheme on model 
semiconductor quantum wires, comparing energies, densities and ionization potentials with full CI 
calculations. KS SCE proved able to capture the “2kF - 4kF” crossover without breaking the spin symmetry, a 
feature that several previous attempts in the literature, including GGA's, hybrids and self-interaction 
corrections, had failed to capture. The SCE KS potential is uniquely capable to create barriers between the 
electrons that give raise to charge localization in the non-interacting KS framework. 
 

4) Strong correlation in Kohn-Sham density functional theory  
F. Malet and P. Gori-Giorgi, Phys. Rev. Lett. 109, 246402 (2012) [citations: 14] 
 

This paper shows how to compute the functional derivative of the highly non-local SCE functional, making 
possible the use of SCE as an approximation for the exchange-correlation functional of KS theory. 
 

5) Optimal-transport formulation of electronic density-functional theory  
G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, Phys. Rev. A 85, 062502 (2012) [citations: 20] 
 

Crossing disciplinary boundaries, I have collaborated with a leading group in optimal transport (a research 
field of mathematics and economics) showing that the SCE is formally equivalent to a Monge-Kantorovich 
problem with Coulomb cost. This paper has triggered interest in the optimal transport community and 
inspired the first proof-of-principle calculation by a group in Berkeley. 
 

6) Density functional theory for strongly interacting electrons  
P. Gori-Giorgi, M. Seidl, and G. Vignale, Phys. Rev. Lett.103, 166402 (2009) [citations: 34] 
      - Article highlighted by the APS with a synopsis in Physics and selected as “Editor’s suggestion” 
      - Selected for the Virtual Journal of Nanoscale Science & Technology 
 

This article presents the first formal DFT theory for strongly-correlated systems, in which the electron-
electron interaction is treated in an exact DFT framework and the kinetic energy is approximated as a density 
functional. In a way, this is an orbital-free version of the KS SCE theory of articles 1-4.  
 

7) Electronic zero-point oscillations in the strong-interaction limit of density functional theory  
P. Gori-Giorgi, G. Vignale, and M. Seidl, J. Chem. Theory Comput. 5, 743 (2009) [citations: 23] 
 

Exact second-order correction expansion in the strong-interaction limit of DFT, formulated in a curvilinear 
space with a metric dictated by the density. 
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8) Simple model for the spherically-and system-averaged pair density: Results for two-electron atoms  
P. Gori-Giorgi and A. Savin, Phys. Rev. A 71, 032513 (2005) [citations: 38] 
 

We have generalized the “Overhauser model” to non-uniform systems, and combined it with range-separated 
multideterminant DFT. This article has inspired many subsequent works and refinements. 
 

9) Spin resolution of the electron-gas correlation energy: Positive same spin contributions 
P. Gori-Giorgi and J. P. Perdew,  Phys. Rev. B Rapid Communications 69, 041103 (2004) [citations: 26] 
Accurate spin resolution of the correlation energy in the uniform electron gas.  
 

10) Short-range correlation in the uniform electron gas: Extended Overhauser model  
P. Gori-Giorgi and J. P. Perdew, Phys. Rev. B 64, 155102 (2001) [citations: 63] 
 

We have formalized and solved the “Overhauser model”, a physically motivated approximate scheme to 
compute the pair density of the uniform electron liquid. This work has inspired many subsequent researches, 
and its results are reported in the textbook Quantum Theory of the Electron Liquid by Giuliani & Vignale. 
 
INVITED TALKS (SELECTION) AT INTERNATIONAL CONFERENCES AND WORKSHOPS 
 

I have been an invited speaker at 34 international conferences in the fields of Density Functional Theory, 
Quantum Chemistry, Condensed Matter Physics, and Applied Mathematics. Here is a selection: 
 

2014  CECAM Workshop: What about U? - Strong correlations from first principles, Lausanne,  
 Switzerland 
2014 Promoting Female Excellence in Theoretical and Computational Chemistry II , Oslo, Norway 
2013  7th Molecular Quantum Mechanics: An international Conference in honour of R.J. Bartlett, Lugano,  

Switzerland  
2013  Semiclassical Origins of Density Functional Approximations, Institute for Pure and Applied 
 Mathematics (IPAM) workshop, University of California, Los Angeles, USA 
2013  Symposium "Electronic Structure" at SIAM Conference on Mathematical Aspects of Materials 
 Science, Philadelphia, USA 
2013 CECAM Workshop: Green's functions Methods: the next generation, Toulouse, France 
2013 CECAM Workshop: Density Functional Theory: learning from the past, looking to the future, Berlin, 

Germany 
2013 16th International Workshop on Computational Physics and Materials Science: Total Energy and 

Force Methods, Trieste, Italy 
2012 ERC Workshop on Optimal Transportation and Applications, Pisa, Italy  
2012 Low-scaling and Unconventional Electronic Structure Techniques (LUEST) Conference, Telluride 
 Science Research Center, Colorado, USA  
2012 Challenges in Density Matrix and Density Functional Theory, Ghent, Belgium 
2011 14th International Density Functional Theory (DFT) Conference, Athens, Greece  
2011 CECAM Workshop: How to speed up progress and reduce empiricism in Density Functional Theory, 
 Dublin, Ireland  
2011 European Seminar on Computational Methods in Quantum Chemistry 2011, Oscarsborg, Norway 
2009 92nd Canadian Chemistry Conference and Exhibition, Hamilton, Ontario, Canada 
2008 Sixth Congress of the International Society for Theoretical Chemical Physics (ISTCP-VI), 

Vancouver, BC, Canada 
2006 30th International Workshop on Condensed Matter Theories, Dresden, Germany 
2006 Frontier Applications and Developments of Density Functional Theory: A Symposium in Honor of 
 Robert G. Parr’s 85th Birthday, ACS Meeting, Atlanta, USA 
2004 28th International Workshop on Condensed Matter Theories, St. Louis, USA 
 
PRIZES AND AWARDS 
2013 Selected by the Netherlands Organisation for Scientific Research (NWO) to appear with a quote and 
 a picture in the vision document Chemistry & Physics, Fundamental For Our Future. The document 
 describes the ambitions for physics and chemistry for the next ten years and can be downloaded at 
 www.nwo.nl/en/news-and-events/news/2013/cw/vision-document-chemistry-and-physics-in-2025-
 presented.html. 
2012 Selected for AcademiaNet: Profiles of Leading Women Scientists (www.academia-net.org) 
2011 The Netherlands Organisation for Scientific Research (NWO) Aspasia prize for excellent female 

scientists (100K€) 
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ERC Consolidator Grant 2014 
Research proposal [Part B2)] 

 
Part B2: The scientific proposal  
 
Section a. State-of-the-art, objectives and overall goal 
 
The electronic-structure problem 
Accurately predicting the electronic structure of atoms, molecules and solids from first principles is crucial 
for many research areas such as theoretical and computational chemistry solid-state physics, materials 
science, biophysics and biochemistry. For example, to design in silico novel materials with specific 
properties, to predict whether a protein will attach to a given site of DNA, or whether a specific chemical 
reaction will occur, a full quantum mechanical treatment of the electronic structure of (at least) the reactive 
part of the system is essential. 
In principle, the electronic structure is determined by the Schrödinger equation. However, due to its 
complexity, solving the Schrödinger equation is in practice limited to systems with only a few electrons. To 
overcome this problem, both chemists and physicists have developed approximate methods to treat the 
many-electron Schrödinger equation. These methods can be roughly divided in two groups: wave-function 
methods and density-functional-theory-based methods. Wave-function methods attempt at constructing an 
approximation for the many-electron wave-function, in most cases optimized according to the variational 
principle. Typical examples are quantum chemistry methods [1,2], which make use of an expansion on a 
basis of Slater determinants (configuration interaction, coupled clusters,...) and quantum Monte Carlo 
(QMC) methods  [3], which start from a more compact form of the wave-function and use stochastic 
techniques to project the ground state. These methods can be very accurate, and have proven to be extremely 
useful for solving many interesting chemical and physical questions. On the other hand, they are 
computationally demanding, and for this reason they are intrinsically limited as far as system size is 
concerned. 
 
Density Functional Theory: successes... 
Density functional theory (DFT), in its Kohn-Sham (KS) formulation  [4], has been a real breakthrough for 
electronic structure calculations. DFT uses the one-electron density and a non-interacting wave function as  
basic variables,  much simpler quantities to handle than a correlated many-electron wave-function. In this 
way, DFT can treat systems much larger than those accessible to wave-function methods. KS DFT, together 
with its extension to time-dependent (TD) phenomena (TDDFT)  [5], made possible the theoretical study of a 
huge number of chemical, physical, and biological processes. These enormous successes are beautiful 
examples of how fundamental theoretical research can have a huge impact in many different fields (inorganic 
and organic chemistry, solid state physics, materials science, surface physics, biochemistry and biophysics). 
The key idea of KS DFT is an exact mapping  [6] between the physical, interacting, many-electron system 
and a model system of non-interacting fermions with the same density, allowing for a realistic treatment of 
the electronic kinetic energy. All the complicated many-body effects are embedded in the so-called 
exchange-correlation (xc) energy functional. Although, in principle, the exact xc functional is unique (or 
“universal”), in practice a large number of approximations has been developed in the last 30 years, often 
tailored to the peculiarities of different systems, different properties, and different phenomena. Common 
practice for DFT users is nowadays to consult the (rather extensive) benchmark literature to choose the 
approximate xc functional most suitable for the problem at hand. This reflects the intrinsic difficulty of 
building a general approximation able to recognize and capture, for each class of systems or process, the 
many-body effects relevant for its description  [7].  
 
... and failures 
Even in this “specialized-functional” world, there are still important cases in which state-of-the-art KS DFT 
encounters severe problems, which is why the quest for better xc functionals continues to be a very active 
research field  [8-10]. In particular  [9,11], present-day KS DFT encounters severe problems in the treatment 
of near-degeneracy and strong-correlation effects (rearrangement of electrons within partially filled levels, 
important for describing bond dissociation but also equilibrium geometries, particularly for systems with d 
and f unsaturated shells, such as transition metals and actinides, technologically useful functional materials, 
and manmade nanostructures) and in the description of van der Waals long-range interactions (relevant, for 
example, for biomolecules and layered materials). While on this latter issue there has been considerable 
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progress in the last years through long-range energy corrections, the difficulties related to near degeneracy 
and strong correlation remain. These difficulties can hamper more or less severely (and sometimes in an 
unpredictable way) a given calculation, depending on their relative importance with respect to other effects 
that are better captured by the available approximate functionals   [9,11].  
It is important to mention that when dealing with strong (or “static”) correlation, similarly to unrestricted 
Hartree-Fock (HF), approximate KS DFT often tries to mimic the physics of strong correlation and near 
degeneracy with spin and spatial symmetry breaking, which in complex systems may occur erratically and 
can be very sensitive to the choice of functional  [10,11]. This easily leads to a wrong characterization of 
several properties and to discontinuous potential energy surfaces  [10,11]. Being able to capture strong 
electronic correlation within KS DFT without resorting to symmetry breaking is arguably one of the most 
important open problems of electronic structure theory  [7,10,11] 
As the KS DFT electronic structure calculations are the starting building blocks for studying sophisticated 
processes on systems too large to be treated with wave-function methods (such as, for example, the 
damaging of DNA from a given compound, or the behavior and properties of novel materials and 
nanostructures), their errors can affect in a drastic way the final results and conclusions. Addressing the 
fundamental problems of KS DFT can make the difference between using computations to understand 
experiments (as it is mainly done nowadays) and to be able to really predict them. 
This proposal aims at addressing the fundamental DFT problems inherent to the description of 
strongly-correlated systems following a strategy radically different than mainstream ones. 
 
Mainstream strategies to construct approximate xc functionals 
We have to keep in mind that a large part of the success of KS DFT stems from its highly non-perturbative 
nature. Already the most basic xc functional, the local density approximation (LDA), relies on the exact 
(obtained from QMC) solution of a many-electron system with uniform density. This exact (at all orders of 
perturbation theory) correlated solution is then used in each point of space in a non-uniform system. 
Precisely because of this non-perturbative character, there is no well defined strategy to improve DFT in a 
truly systematic way. Breakthroughs in the past came mainly from a combination of physical insight, 
mathematical study of exact conditions, and new creative ideas  [7].   
The community of those who try to improve the approximate functionals is relatively small, probably 
precisely because there is no clear, universal, path to follow. At the same time, this small scientific 
community has an enormous potential impact because of the huge number of DFT users: the most successful 
approximations make it possible to treat a large variety of problems in chemistry and physics, and are used 
every year by thousands of scientists in different research areas  [7]. 
The mainstream strategies to address the unsolved problems of KS DFT consist of making an ansatz for the 
dependence of the xc functional on the relevant “ingredients”, increasing the complexity of the 
approximations in a hierarchical manner (“Jacob’s ladder” to the “heaven” of chemical accuracy  [8]), 
although, as mentioned, we have to keep in mind that DFT is not really systematically improvable. At the 
lowest level of approximation one considers the local density only (LDA, LSDA). The next level introduces 
the local density gradients (GGA's), followed by the KS kinetic orbital energies (metaGGA), the occupied 
KS orbitals (exact exchange, hybrid functionals, self-interaction corrections,...), up to including the virtual 
KS orbitals (e.g., random phase approximations, double hybrids,...). The ansatz can be constructed in order 
to fulfill as many exact constraints as possible given the ingredients used  [8]. Some authors also introduce a 
(sometimes very large) number of parameters to be fitted to a specific data set  [12].  Other approaches are 
based on range separation to use long-range exchange only [13,14] or to combine DFT with wavefunction 
methods in a rigorous way  [15]. 
 
A rigorous starting point: The exact strong-correlation limit of DFT 
KS DFT is based on a system of non-interacting fermions, treating the electron-electron interactions in an 
approximate way. Current approximations work well when the physics of the true, interacting, system is not 
too different than the non-interacting one of Kohn and Sham: for these cases the “Jacob’s ladder” and related 
strategies are able to accurately capture the (relatively small) xc effects. Strongly-correlated systems, 
however, are radically different than non-interacting ones. In these cases, the xc functional needs to be a 
drastic correction, and traditional strategies have failed so far. 
My research efforts of the last four years have been mainly devoted to develop a rigorous starting point to 
build this drastic correction, showing, for prototypical cases, that it works. This rigorous starting point is 
the exact xc functional in the limit in which correlation becomes infinitely strong, called “strictly-correlated 
electrons” functional (SCE), first introduced by M. Seidl and coworkers [16,17] in 1999-2000, but only 
treated in an approximate way. Later on, in 2007-2009, I was able, in collaboration with M. Seidl, A. Savin 
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and G. Vignale   [18,19], to write a general solution for the SCE functional and its first-order correction.  The 
SCE functional has a highly non-local dependence on the density that encodes new information with respect 
to the traditional ingredients of the “Jacob's ladder” approach. 
As a group leader funded by the VIDI and other grants (two Marie Curie fellowships - devoted to 
applications in Physics and to the extension to the time domain - and the Dutch grant ECHO-STIP that funds 
one PhD student), I have made considerable steps forward concerning the formalism and the practical 
implementation of SCE, with a focus on the physics of low-density model nanodevices. In particular, I have 
found an elegant and powerful shortcut to compute the functional derivative of the highly non-local SCE 
functional  [20], yielding a one-body multiplicative Kohn-Sham potential which creates, self-consistently, 
“barriers” that make non-interacting electrons reproduce key features of strongly-correlated ones, without 
artificially breaking any symmetry. In fact, we have shown that, when used as an approximation for the 
exchange-correlation functional in the self-consistent KS procedure, the xc SCE functional is able to capture 
strongly-correlated features such as the "2kF - 4kF" crossover in model quantum wires without introducing 
artificial magnetic order   [21], and the transition to the Wigner correlated regime ("Wigner rings") in model 
quantum dots  [22]. These features are out of reach for all the available approximate functionals.  
I have also extended the SCE formalism to fractional electron numbers in a rigorous way  [23], and shown 
that the SCE xc functional displays a derivative discontinuity at integer electron numbers when the system is 
very correlated, with quantitative agreement with exact results which increases as the system becomes more 
and more correlated. Notice that this derivative discontinuity is obtained in a spin-restricted framework, so 
that the KS spectrum truly jumps even when filling the same orbital. This is a unique result  [23] that has 
never been obtained with any other approximation, and it is known to be a key feature to describe the 
ground-state of strongly-correlated systems and important applications such as quantum transport  [9,10,24]. 
The importance of these results is well recognized in the fundamental DFT scientific community: I have 
been invited to present them at most of the key conferences in the field, and the xc SCE functional is 
mentioned in the most recent DFT review articles as a very promising new route  [7,10].   
Another important result I have obtained, crossing disciplinary boundaries, is the reformulation of the SCE 
functional as a mass transportation theory (or optimal transport) problem, an important field of mathematics 
and economics  [25]. This reformulation paves the way to a cross-fertilization between two very different 
research areas, and has already triggered a huge interest in the mass transportation theory community, as 
shown by the increasing number of groups that are publishing on the subject and by the many invitations I 
have received to speak at optimal transport and mathematics conferences.  
Finally, I have started to investigate, with proof-of-principle calculations, the performances of the SCE xc 
functional in chemistry, showing that is able to capture effects that are missed by the standard 
approximations, such as the physics of stretched bonds  [26]  and of loosely bound negative ions  [27]. 
The goal of this ERC proposal is to transform these rigorous results into a complete framework for 
electronic structure computations, working at all correlation regimes, and for a vast range of chemical 
and physical systems. 
 
From the exact strong-coupling expansion to functionals for chemistry and solid-state physics: Challenges 
Chemistry and solid-state physics, however, are more challenging for the SCE functional than low-density 
nanostructures, because the kinetic correlation energy and the electron-electron repulsion often have similar 
importance. For example, in a stretched bond only the bonding electrons are strongly correlated, while the 
others are not. Indeed, our pilot calculations have shown that KS SCE dissociates properly a chemical bond 
without introducing symmetry breaking, but it overcorrelates in all other aspects. This evidently requires 
corrections to the SCE functional, which are one of the objectives of this proposal, and will be built in a 
rigorous way by importing ideas from different research areas in a novel way, as detailed below. 
The other big challenge is that the physics of strong correlation encoded in the highly non-local density 
dependence of the SCE functional does not come for free: the SCE problem is sparse but nonlinear, and a 
general algorithm for its evaluation following our original formulation is still an open problem. The results 
listed above, in fact, were obtained in special cases for which the SCE functional and its functional derivative 
can be evaluated exactly: one-dimensional and spherically-symmetric systems. Progress has been made very 
recently  [28] using our reformulation of the SCE functional as a mass transportation theory problem  [25], 
which transforms the evaluation of the SCE functional and its functional derivative into a maximization 
under linear constraints, although the procedure is still cumbersome and needs further developments.  The 
transformation of the SCE formalism into a practical xc functional is the other main pillar of this research 
proposal.  
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   A new interdisciplinary approach  
In pursuing the final goal of extending the 
applicability of DFT to strongly-correlated 
systems, I want to unite efforts from research 
fields that, although aiming at similar objectives, 
traditionally (with few exceptions) keep a 
distance from each other: the chemistry/physics 
community that develops xc functionals and 
kernels for DFT and TDDFT, and the physics 
community that develops strongly-correlated 
techniques in the context of lattice hamiltonians. 
As I will explain in detail in the Methodology 
part, this will be possible because the KS SCE 
provides a new framework to import results from 
lattice hamiltonians into the DFT real-space 
“continuum”.  Moreover, as already mentioned, 
the SCE theory has a mathematical structure 
formally equivalent to an optimal transport (or 
mass transportation theory) problem, an important 
field of mathematics and economics  [25]. This 
link will be potentiated and exploited in this 
project, both for the algorithmic part and for the 
construction of corrections to SCE. Therefore, this 
proposal lies at the interface of fore-front research 
in chemistry, physics and mathematics. 
Goal and Objectives 

The goal of this ERC proposal is the generalization of the KS SCE theory to realistic problems, yielding an 
accurate, computationally affordable, ab initio description of the ground-state energy and other properties of 
strongly-correlated many-electron systems, based on a physically and mathematically sound framework. 
In order to achieve this goal the following objectives must be met: 

1. Add corrections to (go beyond) the KS SCE approach, which, as mentioned, is a zeroth-order 
expansion of the exact exchange-correlation functional at infinite coupling strength. This means 
adding proper higher order corrections. 

2. Develop dedicated algorithms to evaluate the SCE functional in the general three-dimensional case. 
3. Construct controlled approximations of the results of objectives 1 and 2 to increase the 

computational efficiency. This is necessary for very large systems, and it can also be used in general 
in case the exact implementation of objectives 1 and 2 turns out to be computationally too 
demanding.  

4. Test and benchmark in a systematic way the new approximate functionals and algorithms of 
Objectives 1-3. 

 
Strategy and Approach 
I designed two parallel strategies to pursue the final goal of extending KS DFT to strongly-correlated 
realistic systems: I will have at the same time a “top-down” and a “bottom-up” approach synergistically 
combining chemistry, physics and mathematics. For the top-down approach, my team and I will develop and 
implement the exact SCE (and beyond) functionals and, if needed, make approximations at a later stage. For 
the bottom-up approach, we will begin with approximations and learn by implementing and testing them. 
These two complementary strategies reinforce each other, progressing towards the final common goal. 
In Fig. 1, I report a graphical summary of the four objectives, showing their interactions with arrows that 
indicate how some of the objectives create input and/or feedback for the others. The “top down” and “bottom 
up” strategies are also schematically represented. 
In practice, in the top-down strategy I will use strong correlation techniques from lattice hamiltonians and 
mass transportation theory ideas to design corrections to KS SCE (Objective 1). Mass transportation theory 
will also play an important role in the algorithmic part (Objective 2). Extensive tests (Objective 4) of the 
approximations of Objective 3 are used in the bottom-up strategy. Objectives 1 and 3 will constantly interact 
and affect each other, and the same will happen with algorithms (Objective 2) and the implementation and 
benchmarking part (Objective 4). 

Fig. 1: Schematic overview of how the project is 
organized, showing the objectives, their interactions and 
the "top-down" and "bottom-up" strategies towards the 
final goal. For each objective, the team members are also 
shown in blue. The international and local collaborations 
involved in each objective are reported in purple italics, 
together with the main input research areas/ideas. 
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With this approach I am confident to significantly extend the applicability of KS DFT to systems yet 
unreachable, providing the scientific community with new tools for accurate ab initio modeling of chemical 
and physical systems. 
In the following Section, I fully describe the four objectives, highlighting in detail the novelty of what is 
proposed here with respect to mainstream approaches, and addressing the unconventional methodological 
aspects of the project.  
 
Section b. Methodology 
Objective 1: Beyond KS SCE through a new merging of (lattice) strong-correlation techniques and KS 
DFT 
In many-body physics, strong-correlation techniques have been traditionally developed starting from lattice 
hamiltonians, such as the Hubbard model, the Anderson-impurity model, the t-J model, etc. These theories 
are extremely elegant and powerful, and provide insight into the complex mechanisms arising in real 
materials with strong electronic correlation. On the other hand, they do not treat realistic microscopic 
hamiltonians (necessary to be quantitatively predictive) as it is done, instead, in KS DFT. However, present 
day KS DFT, as mentioned, fails when electronic correlation becomes strong:  the available xc functionals 
often mimick the effects of strong correlation by introducing symmetry breaking (e.g., artificial magnetic 
order), without capturing the right physics [29,30], like in most transition metal oxides.  
 
Comparison with approaches such as LDA+DMFT and LDA+U 
There are several approaches that try to bridge the gap between the two worlds of strong-correlation lattice 
hamiltonians techniques and KS DFT: LDA+U [29], LDA plus dynamical-mean field theory (DMFT)  [31], 
and LDA plus dynamical Vertex Approximation [32], are among the most popular. While these methods 
have been able, indeed, to successfully cure some of the KS DFT problems, they have several drawbacks, 
such as basis dependence, double counting and (for the most accurate ones) a high computational cost. 
Moreover, I will argue here that they do not completely merge the two worlds. 
These approaches start from a low-level approximate xc functional, in most cases the local (spin) density 
approximation (L(S)DA), which gives huge errors when strong correlations are present. Starting from this 
qualitatively wrong description, these merged approaches use some LDA orbitals as input for strong-
correlation calculations. For example, in transition metal oxides, LDA+DMFT only correlates some of the d 
and f valence orbitals that must be identified by hand. Since correlation in these orbitals is also taken into 
account in the LDA calculation, one must correct for double counting, something that, at present, can only be 
done in an approximate and uncontrolled way. 
It is important to keep in mind that KS DFT is, in principle, an exact theory. If we could find a very good 
approximation for the exact xc functional and for the exact xc kernel we could describe strongly-correlated 
systems in a pure DFT framework.  The main reason to undertake these combined approaches is the common 
feeling that, although possible in principle, it is impossible in practice to find xc functionals and kernels able 
to describe strong correlation. 
 
From lattice hamiltonians to the DFT continuum  
In very recent work  [20-23],  my group and I have shown that, instead, it is possible to construct functionals 
that capture strong correlation. The SCE theory, which derives from the exact strong-interaction limit of 

Fig. 2. Left: self-
consistent KS SCE 
electronic densities for 
10 electrons confned in a 
circular harmonic trap. 
Right: the corresponding 
KS SCE potential: when 
the system is strongly 
correlated (top) the KS 
SCE potential builds 
barriers inside the trap, 
creating classically 
forbidden regions  [22] 
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DFT, provides a highly non-local density functional whose corresponding one-body KS potential is able to 
do what people often regarded as practically impossible: making non-interacting electrons reproduce key 
strongly-correlated features, without any artificial symmetry breaking.  As an example, in Fig. 2 I show the 
results for ten electrons confined in a two-dimensional semiconductor nanostructure laterally confined by a 
harmonic trap. When the density in the trap is high (weak correlation) the KS SCE self-consistent density is 
correctly qualitatively dictated by the non-interacting orbital structure (Fermi-liquid like, equivalent to the 
shell structure of a simple atom, e.g., neon). When the electronic density in the trap is low, correlation effects 
become very strong: as well known, the density shows sharp radial rings (“Wigner rings”), which destroy the 
Fermi-like shell structure, and are accurately captured by the self-consistent KS SCE results. Notice that full 
CI at the low densities and electron number showed in the figure is already not doable  [33], and even QMC 
needs to artificially break the fundamental circular symmetry of the system to reach convergence  [34,35]. 
KS SCE instead, can easily treat this regime, without any symmetry breaking. The key point is that, self-
consistently, the KS potential coming from the functional derivative of the xc SCE, builds “barriers” that 
create classically forbidden regions inside the trap (see Fig. 2), and were known from theoretical arguments 
to be a feature of exact KS DFT  [36]. The xc SCE functional is a well defined, physically transparent, 
mechanism to build these barriers self-consistently. 
Similarly to the KS non-interacting kinetic energy, which is determined in terms of the KS orbitals, the SCE 
functional is determined by one-body quantities called co-motion functions fi(r), which are non-local 
functionals of the density ρ(r) and fix the positions of all the electrons in terms of a collective continuum 
real-space variable r.  The net effect of the many-body electron-electron repulsion can then be exactly 
transformed into a local one-body potential, to be used in the KS equations, which is also the functional 
derivative of the SCE functional. The SCE construction can be viewed as a sort of  “floating” Wigner crystal 
in a metric determined by the density ρ(r), as summarized in Fig. 3.   
The KS SCE approach consists in using the exact SCE one-body potential vSCE(r) of Fig. 3 to approximate 
the xc potential of KS theory   [20]. It can be shown from the scaling properties of DFT   [37] that the KS 
SCE theory becomes exact both in the weak- and in the strong-interaction limits  [20]. It also turned out to be 
qualitatively right in describing the crossover between different regimes of correlation, but it still needs 
improvement to be quantitatively accurate at all correlation regimes  [20,21]. This is where a true merging of 
KS DFT and strongly-correlated techniques can take place. Using the KS SCE hamiltonian, several concepts 
and tools of the strongly-correlated world can now be translated into a DFT formalism in the continuum 
(here the word “continuum” is used to stress the difference with lattice hamiltonians) to build physically 
motivated corrections to KS SCE, with the ultimate goal of extending the domain of applicability of DFT to 
systems yet unreachable.  
 
Task 1: xc functionals from a new merging of strongly-correlated techniques and KS DFT 
Team members: 1 PhD student 
Intenrational Collaborations: J. Lorenzana (University of Rome "La Sapienza"), G. Vignale (University of 
Columbia Missouri) 
A sort of "first-order" correction has been already formulated by myself and my coworkers in terms of local 
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Fig. 3: The SCE functional corresponds to the 
minimum possible expectation value of the 
electron-electron interaction in a given non-
uniform smooth density ρ(r). It can be calculated 
through the so-called co-motion functions fi(r), 
which determine the position of electron "i" as a 
function of the collective variable r. The co-
motion functions fi(r) are highly non-local 
functionals of the density ρ(r). The physics is 
similar to the one of a "floating" Wigner crystal 
in a metric defined by the density. Once the co-
motion functions are variationally determined, 
the net electron-electron repulsion can be 
exactly transformed  into a local one-body 
potential, vSCE(r), yielding an approximation for 
the xc potential that becomes asymptotically 
exact in the limit of infinite coupling. 
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quantum fluctuations [38]. However, this correction does not distinguish between different spin states, which 
are taken into account only in the KS kinetic energy, but not in the xc SCE functional. Instead, for the 
delicate physics and chemistry of strongly-correlated materials containing d and f elements and of 
nanoscopic systems, the subtle interplay of the spin state and of correlation needs to be taken into account in 
the xc functional. Since the SCE functional describes a continuum (as a function of the collective variable r) 
of configurations of localized electrons, the idea is to construct correcting terms in the same fashion as it is 
done with lattice hamiltonians In fact, for each r, the SCE construction defines a lattice in which the double 
occupation is suppressed, which, in turn, can be studied with models such as the t-J one. Corrections beyond 
SCE can then be constructed by computing magnetic exchange and superexchange terms as a function of the 
real-space continuum variable r. The needed overlap integrals can be obtained from the quantum fluctuation 
SCE correction that I already started to develop [38]. We will start by first looking at exact magnetic 
exchange and superexchange corrections in simpler systems such as quasi-one-dimensional wires or 
electrons trapped in two dimensions, studying first smaller number of particles for which wave-function 
methods (QMC or full CI) are viable for comparison, to validate the accuracy of these corrections. We will 
further transform these correcting terms into density functionals, making and testing approximations at 
various levels. Embedding techniques inspired to DMFT  [31] or to the recent density matrix embedding 
theory  [39] can also be used to reduce the computational effort when going to larger systems. The 
conceptual difference between approaches such as LDA+U or LDA+DMFT and what is proposed here is 
illustrated schematically in Fig. 4.  
 
Part of this work will be done in collaboration with the group of J. Lorenzana at the University of  Rome "La 
Sapienza" (Italy), who has long-standing experience in strongly-correlated techniques, and with G. Vignale 
(University of Columbia Missouri). 
Finally, interacting with the other objectives that focus on the algorithmic implementation of the SCE 
functional (approximate or exact), the most promising approximations will be implemented into the DFT 
codes ADF and BAND and tested for realistic chemical systems and solids as described in Objective 3. Tests 
for model and realistic quantum wires, dots, and point contacts will be also performed.  
 
Comparison with other (related) approaches 
In recent years, there has been an interest from the DFT community into lattice  hamiltonians  [40-44], with 
the main goal of studying and characterizing (by inverting the exact many-body solution) the exact KS 
system for prototypical strongly-correlated cases [40-44], and of applying lattice DFT  [44], a DFT theory 
adapted to lattice hamiltonians, for which some functionals based on the 1D homogeneous Hubbard model 
have been developed  [45]. These studies have provided enormous insight into the exact KS theory, and have 
also shown that several strong correlation features such as some aspects of the Kondo effect  [24] and a 
realistic dynamical description of the Coulomb blockade  [44] are, in principle, accessible to KS (TD)DFT. 
These results support the ideas of this project, as they provide evidence that it is possible to describe many 
strong-correlation features within KS DFT. It is, however, also important to stress the differences between 
these works and what is planned for this part of this proposal: here, we have already developed a functional 
able to capture some of the relevant effects to describe strong correlation in a real-space (continuum) KS 
DFT framework, and we will use our new formulation to translate and import the concepts developed with 
lattice hamiltonians into a true DFT formalism in the continuum. 
Other approaches that relate many-body physics and KS DFT involve the use of the unoccupied KS orbitals, 
performing many-body perturbation theory starting from the KS solution. These theories typically start from 
the random-phase approximation (RPA) and may include beyond-RPA diagrams (for a recent review see   
[46]). The approach proposed here is, instead, highly non-perturbative, as it uses the exact solution at infinite 
coupling strength and its corrections to build the exchange-correlation functional of KS DFT.  

Fig. 4: Conceptual difference between current 
approaches such as LDA+U and LDA+DMFT, 
and this proposal. Here, strongly-correlated 
concepts and tools will be used to improve KS 
SCE, working in a continuum DFT framework. 
Current approaches, instead, use output 
quantities from KS LDA calculations on which, 
afterwards, a strongly-correlated treatment is 
performed. 
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Another strategy to cure some of the KS DFT problems for strong correlation is the inclusion of self-
interaction corrections (SIC) [47], which, although successful in some aspects, have drawbacks such as the 
non invariance with respect to unitary rotations of the KS orbitals. Also, notice that KS DFT with SIC has 
been used to attempt to describe charge localization in non-magnetic quantum wires without success [48], 
contrary to our KS SCE theory, which proved able to perfectly capture this kind of physics [21]. 
 
Objective 2: Algorithms for the exact SCE functional from Optimal Transport 
As illustrated in Fig. 2, the exact SCE functional corresponds to the minimum electron-electron interaction in 
a given smooth quantum mechanical density. This defines a problem that is neither properly classical 
(classical systems at zero temperature do not have smooth densities) nor quantum mechanical (there is zero 
kinetic energy, so that quantum effects do not enter). Notice that this does not imply that we do not take into 
account quantum effects: they enter when we use the SCE functional in the KS approach. 
A very suitable mathematical framework for the SCE functional is optimal transport (or mass transportation 
theory), an important field of mathematics and economics, as I have recently shown in collaboration with a 
leading group in this field [25].   
 
Optimal Transport (or Mass Transportation Theory) with Coulomb cost 
Mass transportation theory dates back to 1781 when Monge [49] posed the problem of finding the most 
economical way of moving soil from one area to another, and received a boost when Kantorovich, in 1942, 
generalized it to what is now known as the Kantorovich dual problem [50]. In the last twenty years optimal 
transport has developed into one of the most fertile and active fields in mathematics, because long-standing 
issues could be finally addressed, and also because connections with classical problems in geometry, partial 
differential equations, nonlinear dynamics, and other problems of economics have been established  [51]. 
The original Monge-Kantorovich problem consists in finding the most economical way to move a mass 
distribution into another one (according to a given definition of the cost function, which defines the work 
necessary to move a unit mass from one location to another). For example, one may wish to move books 
from one shelf ("shelf 1'') to another ("shelf 2''), by minimizing the total work. The goal of solving the 
Monge problem is then to find an optimal map which assigns to every book in shelf 1 a unique final 
destination in shelf 2 (see Fig. 5). 
In Ref. [25] we have shown that the co-motion functions of the SCE theory are exactly the Monge optimal 
maps for a mass transportation problem with cost function given by the Coulomb repulsion. However, it is 
well known in mass transportation theory that the Monge problem is very delicate and that proving in general 
the existence of the optimal maps (the co-motion functions in the SCE case) is extremely difficult, even if we 
have hints that in the special case of Coulomb cost it might be possible to prove their general existence under 
rather mild assumptions. In 1942 Kantorovich proposed a relaxed formulation of the Monge problem, in 

which the goal is now to find a 
transport plan, which gives the 
probability that, when minimizing the 
total cost, a certain mass element in the 
first mass distribution be transported 
into another one in the second mass 
distribution. This is evidently more 
general than the Monge transportation 
map, which assigns a unique final 
destination in the second mass 
distribution to every element in the first 
one.  We have extended the relaxed 
Kantorovich formulation to the SCE 
problem   [25]. This way, we have also 
been able to generalize the dual 
Kantorovich problem to the SCE 
functional, transforming the non linear 
SCE problem into a maximization 
under linear constraints that yields, in 
one shot, the functional and its 
functional derivative (needed for the 
KS potential). This reformulation paves 
the way to readapting algorithms based 

Fig. 5: The Monge problem of finding the most economical way 
of moving a mass distribution into another one. Usually, the 
work necessary to move a unit mass from one location to 
another is set equal to the distance between the two locations. 
The SCE functional defines a similar problem in which, instead, 
the cost function is given by the Coulomb repulsion, and the 
goal is to transport N-1 times the density into itself.   
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on linear programming developed in the framework of optimal transport to the SCE problem. Indeed, very 
recently, building on our results, a research group in Berkeley has implemented the first proof-of-principle 
Kantorovich dual solution to compute the SCE functional in arbitrary 3D geometry   [28]. 
 
Task 2: From mass transportation theory to algorithms and corrections for the SCE functional 
Team members: 1 postdoc (2.5 years) 
International Collaborations: G. Buttazzo and L. De Pascale (Mathematics, University of Pisa, Italy), G. 
Friesecke (Mathematics, Munich Technical University, Germany) 
In this part of the project I plan to continue and expand my interaction with the optimal transport community 
in order to 1) import and readapt algorithms developed in this framework, and 2) gain insight into the exact 
SCE functional and its corrections.  
The implementation of the exact SCE functional in the general two- and three- dimensional cases poses new 
challenges also for the field of mass transportation theory. The first challenge is that the Coulomb repulsion 
as cost function has never been considered in the field, until very recently, when triggered by our work. The 
second challenge is that the SCE functional is an optimal transport problem with many mass distributions 
(while in the classical Monge-Kantorovich problem one treats normally just two mass distributions), for 
which the literature is scarce. Fortunately, all the mass distributions are the same in the SCE case, equal to 
the electronic densities. This gives to the problem additional symmetries that highly simplify it  [52,53]. The 
very recent work done by the Berkeley group [28] showed that it is possible to solve the dual Kantorovich 
problem to compute the SCE potential. However, they could only address small systems, with less than 10 
electrons.  We will start by trying to extend this approach to larger systems, reformulating the constraints in a 
problem given in a basis set, exploring several levels of approximations. A key point is to understand the 
sensitivity of the KS SCE approach to the actual accuracy of the SCE one-body potential, which is the output 
of the Kantorovich dual problem. Several results in KS DFT for the optimized potential method showed that 
the density is not very sensitive to the fine details of the potential, but only to some key features. The 
challenge will be to identify these key features in the SCE case, and to impose them as constraints in a 
simplified Kantorovich formulation. We will also pursue the Monge approach based on the co-motion 
functions, since they provide very useful physical information on the system, as explained in the approach of 
Obective 1. 
Mass transportation theory can also be used to construct corrections beyond KS SCE, complementing the 
approach described in Objective 1. This can be done by defining a different transport plan, which is not 
optimal for the electron-electron interaction energy alone, but for the original quantum mechanical problem, 
or, at least, for some parts of it. This can be done by partially relaxing the constraints in the Kantorovich 
formulation. Approximations for the co-motion functions will be also studied, interacting with Objective 3. 
Notice that there is already a big interest of the Optimal Transport community in the problem defined by the 
SCE functional.  I have been an invited speaker in the 2012 European symposium on Optimal Transport 
Applications [http://crm.sns.it/event/251/], where I was explicitly asked to illustrate the connection between 
the Monge-Kantorovich problem and DFT. Also, very recently, other mass transportation theory groups have 
started to work on the SCE problem [52-54]. This interest clearly increases the chances of importing 
algorithms and ideas from this research field.   
 
Objective 3: xc functionals from approximate SCE and its corrections, and beyond 
Important examples of strongly-correlated chemical systems for which state-of-the art KS DFT has severe 
problems are transition metals (key agents in catalysis) and the stretching and breaking of the chemical bond 
(crucial for predicting chemical reactions). Not surprisingly, these problems have the same roots as the 
problems just mentioned in Objective 1, with strong electronic correlation being mimicked by the 
approximate functionals with spin and spatial symmetry breaking, which, especially for transition metal 
complexes, occurs erratically, and is very sensitive to the functional chosen. The consequences are wrong 
characterizations of the ground and excited states, and problems in keeping the potential energy surfaces 
continuous [11]. This is particularly striking, considering that KS DFT is regarded as the workhorse for 
transition metal chemistry, because, due to the large electronic correlations, wave-function methods are just 
not viable: already the simple transition metal dimers Cr2 and Fe2 have presented enormous hurdles for 
wave-function theory. It is then crucial to address all these problems within a KS DFT framework. 
While in the strongly-correlated-electron physics community most effort is put into approaches that correct 
the errors of KS DFT via a correlated treatment after a KS calculation done with a low-level functional (see 
Fig. 3), in chemistry there has been an enormous flourishing of research aimed at directly improving the xc 
functionals. As already mentioned, this is done, basically, by following two main strategies: 1) the inclusion 
of more and more exact properties in the approximate xc functional by adding more ingredients (gradients of 
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the density, orbital-kinetic-energy density, exact exchange, unoccupied KS orbitals - summarized in the so-
called "Jacob's ladder" towards the "heaven" of chemical accuracy [8]), and 2) more pragmatically, by fitting 
a (often quite large) number of parameters on empirical data sets, resulting in functionals highly optimized 
for specific systems or processes [8,12]. The drawback of approach 1) is that it has not given, yet, 
approximations with the desired accuracy, and the problems with approach 2) is that these highly-optimized 
functionals can easily fail for systems other than those used for their fine-tuning.  
In any case, the accuracy for transition metal chemistry and for predicting chemical reactions is, with both 
strategies, far from satisfactory, presenting all the problems mentioned above. 
 
New xc functionals from approximate SCE + corrections: bottom up strategy 
In parallel and in synergy with the efforts described in the previous two objectives, in which a rigorous 
treatment starting from strongly-correlated-electron techniques will be used to develop corrections to KS 
SCE (making approximations at a later stage), in this part of the project I will start to directly build new 
approximate functionals by using a functional form inspired to the SCE theory, and to test them. The idea is 
to start to learn since the beginning which aspects of SCE and its higher order corrections are crucial and 
which ones can be neglected or approximated.  
An important part of this objective will be also to design and test seamless ways to combine some aspects of 
standard functionals with SCE. This is necessary to be able to describe in a quantitative accurate way 
systems at moderate and intermediate correlation regimes. 
As already anticipated in Fig. 1, I will have at the same time a "top-down" approach (Objectives 1-2: develop 
and implement the exact functionals and then, if needed, make approximations at a later stage) and a 
"bottom-up" approach (start since the beginning with approximations and learn by testing them). These two 
strategies will continuously interact and affect each other, progressing towards the final common goal. 
 
Building Approximations 
As illustrated in Fig. 3, the SCE functional depends on one-body quantities called co-motion functions that 
perfectly correlate all the electronic positions, and are highly non-local functionals of the density. Once the 
co-motion functions are known, the corresponding KS potential can be easily built, as I have recently shown  
[20]. While for the quasi-one-dimensional case that we have treated in our preliminary tests [21] the 
computational effort of the KS SCE approach was similar to the one of standard KS LDA, computing the 
exact co-motion functions in the general three-dimensional case might turn out to be too expensive or not 
doable, as discussed in the previous Objective 2. The key idea, here, is to build approximate co-motion 
functions, leading to new functionals totally inspired to the SCE theory. This is very different than the 
traditional ingredients of the "Jacob's ladder" strategy: the new information here is the non-locality brought 
in by the one-body approximate co-motion functions, and, at a later stage, in the approximate higher order 
corrections inspired to the results of Objective 1.  
Moreover, as already discussed, our pilot calculations on chemical systems have shown that the SCE 
functional is essentially complementary to the standard approximations: it correctly describes very correlated 
situations (e.g., a stretched bond), but gives energies way too low for cases in which simple xc functionals 
such as GGA's work well.  
It seems thus very attractive to combine the SCE functional with GGA's or metaGGA functionals. This, 
however, needs to be done in a rigorous way, to avoid any double counting and empiricism.  
In this respect I will follow two main strategies:  
 
Task 3: Local interpolation along the adiabatic connection 
Team member: 1 PhD student 
International Collaborations: M. Seidl (Physics, University of Regensburg, Germany), A. Savin (Chemistry, 
CNRS Paris, France), A. Teale (Department of Chemistry, University of Nottingham, UK) 
The first one is based on a local interpolation along the standard adiabatic connection of DFT (in which the 
electron-electron interaction is switched on – at fixed electronic density - by multiplying it by a real constant 
varying between 0 and 1). The idea is inspired to the work of Seidl et al.  [55], who constructed an 
interpolation for the total xc energy between the weakly correlated regime (taking the two leading terms in 
the Taylor expansion, corresponding to exact exchange and second-order perturbation theory) and the 
strongly-correlated regime (SCE and first-order correction to SCE - at the time both terms could only be 
approximated in a semilocal way, as the exact SCE solution was not known). The problem with the original 
idea of Seidl at al. [55] is that it yields an approximate xc energy functional that is not size-consistent, 
because the size-consistent ingredients enter necessarily in a non-linear way. With the exact SCE solution, 
we have also access to local quantities, also called energy densities. If we construct the interpolation locally 
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(that is, in each point of space, interpolating between energy densities at weak and strong correlation) we 
recover in a very natural way size-consistency (at least in the usual DFT sense). When constructing this local 
interpolation it is important to keep in mind that energy densities are not uniquely defined, so that the local 
interpolation makes sense only if all the input quantities (at weak and strong correlation) are defined in the 
same way (people use often the term gauge). Together with my coworkers, I have already shown how to 
construct the SCE energy density in the gauge of the exchange-correlation hole from the co-motion functions  
[56]. This gauge is probably the most natural one, and can be easily combined, at weak correlation, with the 
exact (or approximate, like the metaGGA Becke-Roussel exchange hole functional  [57], which is in the 
correct gauge) exchange energy density obtained from the exchange hole. 
Another key point here is to have a local indicator of correlation, that is, a quantity that tells us, in each point 
of space, if our system is closer to the weak- or to the strong-correlation limit. This local indicator should 
have a role similar to second-order perturbation theory in the original (non size-consistent) global 
interpolation of Seidl at al.  [55]. To construct this local indicator I will proceed exploring different routes. A 
first one is based on the idea of Becke  [58] of using the local normalization of the exact exchange hole: in 
situations of strong correlation the exact exchange hole is highly delocalized on many centers and its local 
normalization is thus different from minus one (smaller in absolute value) and would signal a situation in 
which strong “static” correlation is present.  Another idea is based on the “Overhauser model”, a physically 
sound way of constructing the pair density of a many-electron system, that I have contributed to develop  
[59,60]. By using the Overhauser model in a perturbative way, one could get an estimate of the effect of 
second-order perturbation theory on the exchange-correlation hole, thus directly having an indicator in the 
right gauge. A third promising idea is to use the (exact or approximate) co-motion functions, as they provide, 
in each point r, a local estimate of the average electron-electron distance, r12(r). In other words, the co-
motion functions are able to exactly transform a two-body observable (the electron-electron distance) into a 
local one-body quantity. A comparison of the local average electron-electron distance with the Bohr radius a0 
will allow us to establish whether a system is closer to the weakly correlated regime (a0 >> r12(r)) or to the 
strongly-correlated one (a0 << r12(r)).  
Collaborating with A. Teale, who contributed to develop a sophisticated machinery to extract nearly exact 
quantities along the adiabatic connection by using accurate wave function results and the Legendre transform 
formulation of DFT  [61,62], I will also analyze “exact” local second-order corrections, built from accurate 
pair densities. This will allow us to compare our approximate local indicators of correlation with an exact 
one, and to get ideas for constructing improved approximations. 
Finally, collaborating with A. Savin, I will also explore non linear adiabatic connections like the one based 
on range separation  [63], as it might be simpler to construct interpolations in such cases. 
 
Task 4: GGA’s, metaGGA’s and hybrid corrections to SCE 
Team member: 1 PhD student 
International Collaborations: J. P. Perdew (Physics, Temple University, USA), K. Burke (Chemistry & 
Physics, University of California Irvine, USA)  
Local Collaborations: E. J. Baerends (host institution) 
The second strategy consists in directly building xc functionals to be combined with the approximate SCE 
(and its corrections developed in objectives 1-2).  As already mentioned (see Fig. 2), in exact KS DFT strong 
correlation is captured with “barriers” (or “bumps”) in the Kohn-Sham potential that create internal 
classically forbidden regions for the KS orbitals, describing the physics of charge localization.  
GGA’s, metaGGA’s or hybrids are not able to create these barriers self-consistently, while self-consistent 
KS calculations with the xc SCE functional creates them, at least partially, in a physically and 
mathematically sound way.  Once the barriers and the internal classically forbidden regions are created with 
the xc SCE functional, we can build GGA’s correction specifically designed to deal with these regions. In 
fact, in recent years, it has been proven that the gradient expansion for classically forbidden regions is 
different than the one for classically allowed regions [64]. This new mathematical insight has lead to a 
formal derivation of GGA parameters previously obtained by fitting procedures [65], and to improved 
GGA’s for solids, either by including the new exact expansion [66] or by using an expansion derived from 
surface effects  [67]. The idea here is to use the exact properties of the gradient expansion for classically 
forbidden regions to improve the results from KS SCE. This can be realized by designing GGA’s that treat in 
a correct way both the internal classically forbidden regions due to strong correlation and the normal 
(classically allowed) regions, recovering the accuracy of GGA’s for weak and moderate correlation, while 
retaining and improving the accuracy of SCE to treat strong correlation. I will collaborate on this aspect with 
K. Burke and J.P. Perdew, who have long-standing experience in building approximate functionals. 
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Another related strategy to construct GGA, metaGGA’s and/or hybrid corrections to the xc SCE functional is 
based on the scaling properties of the functionals  [37]. A given approximate functional can be scaled to the 
low-density limit to extract its strong-coupling contribution, which can be subtracted to avoid double 
counting when combined with SCE and its higher order corrections.  
Other ways to retain the non-local (exact or approximate) physics of the SCE functional and to go beyond it 
is to consider the exact partition of the KS potential that is obtained from the equation for the square root of 
the density  [68,69]. This equation can be written, more generally, along the adiabatic connection, and thus 
also for the limit of infinite coupling strength. By comparing the potential with the one at the physical 
coupling strength and with the KS one it is possible to gain insight in the construction of a kinetic correlation 
correction to the SCE, and to its functional derivative. I will collaborate on this aspect with E.J. Baerends 
from my same host institution. 
 
Task 5: Testing the approximations in a systematic way 
Team members: 1 postdoc (3 years), 1 Technician (5 years, 0.2 fte) 
Local Collaborations: L. Visscher (host institution), SCM (spinoff company that develops and maintains the 
codes ADF and BAND) 
A crucial role in this proposal is played by testing and validating the approximate functionals. This is 
actually far from obvious: validating and benchmarking functionals is, in many ways, a research field by 
itself. Especially in chemistry, the scientific community has produced an enormous know-how on validating 
and benchmarking approximate functionals, producing an extensive set of reference data that I intend to fully 
exploit (for extensive reviews, see, e.g.  [11,12]). 
In general, the benchmark data used for validation can be either from experiment or, for simple enough 
systems, from wave-function calculations. However, we must be very cautious about wave-function results 
when dealing with correlated systems, because even very high-level wave function calculations might not be 
reliable if static correlation is too complex (e.g., in transition metal chemistry). On the other hand, the 
comparison with wave-function calculations is generally more instructive because it allows for a deeper 
understanding of the problems inherent to our approximations. For example, we can extract quantities such 
as the density and the spin densities  [70], providing way more insight than the simple energetics. 
At the validating stage it is thus crucial to interact with chemists with experience in benchmarking 
functionals using wave-function techniques with the needed care, as well as experimental data sets carefully 
chosen. I will then collaborate, on this aspect, with the group of L. Visscher located in my same institution, 
who has a long-standing experience in benchmarking quantum chemical methods. The aim is to improve the 
KS DFT accuracy for systems containing d and f elements, for transition states, and, in general, for systems 
with multireference character. We will thus focus on test sets containing this kind of systems and quantities 
for validation.  
In a first stage, these accurate and controlled tests will provide a deep understanding of the key features of 
approximate SCE -based functionals needed to capture the relevant many-body effects and, at the same time, 
will allow a careful analysis of the consequences of each approximate step done in the top-down strategy.  
In the final stage, validation will be essential to deliver new reliable xc functionals. 
Regarding the practical implementation of new approximations into DFT codes, this project will benefit of 
the technical support of SCM (the spinoff company that develops and maintains the chemistry code ADF and 
the solid-state code BAND), located in my same host institution. 
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Section c. Resources (incl. project costs)  
 
Research Team 
To successfully build a new theoretical framework for accurate electronic structure calculations, I propose to 
create a multidisciplinary research group of graduate students and postdoctoral associates with expertise in 
the three relevant research areas: 
 
Position Key expertise Focus area Role in project 
PI (myself) xc functionals and SCE Chemsitry and Physics group leader 
Post-doc 1 Mass transportation theory Mathematics Task 2: Algorithms 
Post-doc 2 Benchmarking xc functionals Chemistry Task 5: test xc functionals 
PhD student 1 Strongly-correlated techniques Physics Task 1: corrections to SCE 
PhD student 2 Density functional theory  Chemistry and Physics Task 3: xc functionals from 

SCE + local interpolation 
PhD student 3 Density functional theory Physics and Chemistry Task 4: SCE + adapted 

GGA’s, metaGGA’s, etc. 
System analyst System administration/ 

Programming 
Computer Science Cluster administration 

 
My documented expertise in the three areas involved (not only in terms of publications, but also as a frequent 
invited speaker in conferences in the three scientific communities) will allow me to efficiently direct and 
coordinate this mixed research group, defining the research directions and also translating between different 
scientific languages, dedicating 60% of my time to the project. This way, all the members of the group 
will be able to go beyond the boundaries of their domain and to establish fruitful interactions with each other.    
The tasks assigned to each member of the team and an estimated timeline is reported in Fig. 6. 

 
Host Institution and Local Collaborations 
My host institution is the Theoretical 
Chemistry Department of the VU 
University in Amsterdam, which has a long-
standing tradition of excellence in the field of 
fundamental development in DFT, embedding 
the project in one of the best possible 
environments. In particular, I will benefit of 
collaborations and discussions with leading 
scientists in DFT such as E. J. Baerends and 
O. Gristenko, and of working with  L. 
Visscher in benchmarking and validating the 
new functionals (Objective 4). The spinoff 
company SCM, which develops and 
maintains the DFT codes ADF (chemistry) 
and BAND (extended systems) is located in 
the same department and will assure all the 
needed technical assistance when dealing with 
the implementation of the new functionals.  
Moreover, the science faculties of the VU 
University and of the University of 
Amsterdam will form together, in the next 
years, a new institution called Amsterdam Faculty of Science. Our department will then move in 2018 to be 
merged with other Chemistry and Physics departments in a unit called Amsterdam Center for Multiscale 
Modeling, which will be an even better host for this interdisciplinary project. 
 
  

year 1 year 2 year 3 year 4 year 5

Beyond KS SCE
(Task1)

Algorithms
(Task 2)

xc func.: interpolation
(Task 3)

xc func.: GGA-SCE, ...
(Task 4)

Test xc functionals 
(Task 5)

PhD 1
PhD 2
PhD 3

postdoc 1
postdoc 2

Fig. 6 Schematic timeline for the entire project, including 
all funded scientific personnel. 
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Cost Category Total in Euro  

Direct 
Costs 

Personnel 

PI 331.000 
Senior Staff   
Postdocs (2x) 382.000 
Students (3x) 592.000 
Other (Technician) 64.000 

i. Total Direct Costs for Personnel (in Euro) 1.369.000  
Travel  59.000 
Equipment 163.000  

Other goods 
and services 

Consumables   
Publications (including Open Access fees), etc. 5.000 
Other (please specify)   

ii. Total Other Direct Costs (in Euro) 227.000 
A – Total Direct Costs (i + ii) (in Euro) 1.596.000 
B – Indirect Costs (overheads) 25% of Direct Costs (in Euro) 399.000 
C1 – Subcontracting Costs (no overheads) (in Euro)  
C2 – Other Direct Costs with no overheads (in Euro) 5.000  
Total Estimated Eligible Costs (A + B + C) (in Euro) 2.000.000 
Total Requested EU Contribution (in Euro) 2.000.000 
 
 

For the above cost table, please indicate the % of working time the PI dedicates to the 
project over the period of the grant: 

60 % 

 
International Collaborations 
As already mentioned in the Methodology section, I also build on several international collaborations with 
groups specialized in the research fields involved.  
All the collaborations involved in this proposal are also summarized below 

• K. Burke (Chemistry & Physics, University of California Irvine, USA) 
• G. Butazzo and L. De Pascale (Department of Mathematics, University of Pisa, Italy) 
• J. Lorenzana (Department of Physics, University of Rome "La Sapienza", Italy) 
• J. P. Perdew (Physics Department, Temple University, Philadelphia, USA) 
• A. Savin and J. Toulouse (Theoretical Chemistry, CNRS Paris, France) 
• M. Seidl (Institute of Theoretical Physics, University of Regensburg, Germany) 
• A. Teale (Department of Chemistry, University of Nottingham, UK) 
• G. Vignale (Department of Physics and Astronomy, University of Missouri, USA) 

 
Equipment and Technical Staff 
I will need extensive computer resources to carry on the different aspects of this proposal, especially the part 
concerning benchmarking the approximations. I thus plan to buy a computer cluster and to employ for one 
day per week a technician and programmer to provide the technical support. 
 


