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ABSTRACT: We propose a simple analytic representation of the correlation energy
�c for the two-dimensional electron gas, as a function of the density parameter rs and
the spin polarization �. This new parametrization includes most of the known high- and
low-density limits and fits our new fixed-node diffusion Monte Carlo simulations,
performed for a wide range of electron densities (1 � rs � 40) and spin-polarization
states (0 � � � 1). In this way we provide a reliable local-spin-density energy functional
for two-dimensional systems. The corresponding correlation potential is discussed and
compared with previous models. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 91:
126–130, 2003
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Introduction

T he ideal two-dimensional electron gas (2DEG)
is a simple model in which N strictly 2D elec-

trons are confined in a square of surface S (period-
ically repeated in space) and interact via a 1/r
potential within a uniform, rigid neutralizing back-
ground. When studying this model, one is usually

interested in its macroscopic properties, that is, the
thermodynamic limit (N, S 3 � keeping n � N/S
constant) of its extensive physical quantities per
particle. Two parameters are enough to define the
zero-temperature phase diagram of the 2D electron
gas, namely, the density parameter rs � 1/��naB

(where n is the density and aB the Bohr radius) and
the spin polarization � � (n1� n2)/n, where n1(2)

is the density of spin-up (-down) electrons.
The model itself is interesting, because it can

provide information about electrons confined in
two dimensions realized in semiconductor hetero-
structures [1]. Moreover, just like the three-dimen-
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sional case, the correlation energy of the 2D electron
gas as a function of density rs and spin polarization
� provides the local spin density (LSD) energy func-
tional for density functional calculations of 2D sys-
tems. Currently, 2D LSD functionals are based on
parametrized diffusion quantum Monte Carlo
(DMC) data [2] at � � 0 and � � 1 [3–6]. At inter-
mediate spin polarizations, 0 � � � 1, an exchange-
like interpolation is often used [3].

We have recently presented new DMC simula-
tions for a wide range of electron densities rs and
spin polarizations � [7]. The direct DMC calculation
of the � dependence is new and provides a reliable
basis for building an LSD energy functional for 2D
systems. In this work we present and discuss an
accurate parametrization of these new data as a
function of rs and �. This new parametrization ac-
curately reproduces the � dependence of the DMC
data and includes most of the known high- and
low-density limits. We also compare the corre-
sponding correlation potential to previous approx-
imations, finding significant discrepancies at � � 0.

Hartree atomic units are used throughout this
work.

Diffusion Monte Carlo Data

Our calculations use standard fixed-node diffu-
sion Monte Carlo (FN-DMC) [8], which projects the
lowest-energy eigenstate � of the many-body Ham-
iltonian with the boundary condition that � van-
ishes at the nodes of a trial function �. Details of the
simulation are similar to those of Ref. [9]; further
details can be found in Ref. [7]. For each of the
densities corresponding to rs � 1, 2, 5, 10 we have
considered about 20 values of N and 10–12 polar-
izations �. For the densities rs � 20 and 30 we have
used the data of Ref. [9]. We have also computed
the energy at rs � 40 for � � 1. To estimate the
difference 	 between the energy �N(rs, �) of the
finite system and its thermodynamic limit �(rs, �)
we adopted a new strategy. Rather than a separate
size extrapolation for each density based on varia-
tional energies [2, 10, 11], we performed a global fit
directly based on FN-DMC energies, which exploits
two physically motivated ingredients: (1) the
Fermi-liquid–like size correction [12]

	
rs, �, N� � �N
rs, �� � �
rs, ��

� �
1 � 	�2��tN
rs, �� � ts
rs, ��


� 

 � ��2�/N (1)

(tN and ts are the Fermi energies of N and � parti-
cles, respectively, and �, 	, 
, and � are rs-depen-
dent parameters); (2) an analytic expression for �(rs,
�), detailed in the next section, which involves 12
more free parameters.

The only uncontrolled source of error, the fixed-
node approximation, depends on the nodal struc-
ture of �. We choose a Slater–Jastrow trial function
with plane waves (PW) as single orbitals. However,
within the fixed-node approximation, better results
are obtained with backflow (BF) correlations in the
wavefunction [11]. Because simulations with the BF
wavefunction are considerably more demanding
than with PW determinants, we calculated BF en-
ergies only for � � 0, N � 58 and � � 1, N � 57 for
each density. For other values of N and �, the effect
of BF is estimated as a quadratic interpolation in �
and appended to PW energies, under the further
assumption that the size dependence be the same
for BF and PW [7].

Analytic Model for the
Correlation Energy

In this section we present our parametrization of
the correlation energy of the 2D gas as a function of
rs and �. We first discuss the � dependence at a
given fixed density, then our choice for the rs de-
pendence is presented, and finally we impose the
exact high- and low-density limits to our functional
form.

SPIN-POLARIZATION DEPENDENCE

We first noticed that, for rs � 5, the � dependence
of the exchange-correlation energy �xc � � � ts of
our DMC data is accurately described by a biqua-
dratic form, c0(rs) � c1(rs)�

2 � c2(rs)�
4 (see also Ref.

[9]). On the other hand, the known high-density
limit [13],

�xc
rs 3 0, �� � �x
rs, �� � a0
��

� b0
��rs ln rs � O
rs�, (2)

contains nonnegligible contributions from higher
powers of �: the dominating exchange term �x goes
like (1 � �)3/2 � (1 � �)3/2, and the constant term
a0(�) is well fitted by an eighth-degree polynomial
function of � [13]. Because we want to interpolate
the energy between high and low density, we
choose a functional form that quenches the contri-
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butions to �x beyond fourth order in � as rs in-
creases,

�c
rs�� � 
e�
rs � 1��x

6�
rs, �� � �0
rs�

� �1
rs��2 � �2
rs��4, (3)

where

�x

6�
rs, �� � �x
rs, �� � 
2 �

3
4 �2 �

3
64 �4��x
rs, 0�/ 2

is the Taylor expansion of �x beyond fourth order in
�. Because the first term on the right side of Eq. (3)
contains power 6 and higher of �, it immediately
identifies the function �0(rs) as the correlation en-
ergy at zero polarization,

�0
rs� � �c
rs, 0�.

Furthermore,

�1
rs� � 2
�2

��2 �c
rs, �����0

gives the spin stiffness, and

�2
rs� � 24
�4

��4 �c
rs, �����0.

DENSITY DEPENDENCE

We have now to fix the rs dependence of the
functions �i. We generalize the Perdew and Wang
[14] form (designed for the three-dimensional gas)
to the 2D case as follows

�i
rs� � Ai � 
Birs � Cirs
2 � Dirs

3�

� ln�1 �
1

Eirs � Firs
3/ 2 � Girs

2 � Hirs
3� .

(4)

This form possesses the small- and large-rs expan-
sions:

�i
rs 3 0� � Ai � Birs ln rs � O
rs� (5)

�i
rs 3 �� � Ai �
Di

Hi
� �Ci

Hi
�

DiGi

Hi
2 �

�
1
rs

�
DiFi

Hi
2

1
rs

3/ 2 � O� 1
rs

2� , (6)

and it thus has the correct high- and low-density
behavior [13, 15], provided that the constraint Ai �
Di/Hi � 0 is imposed.

EXACT LIMITS

Our �c(rs, �) has the correct functional form for
small and large rs; it is now straightforward to
impose most of the known quantitative constraints.
We constrain our �c(rs, �) to fulfill: (1) the require-
ment that the exact values [13, 16] of a0(�) and b0(�)
at � � 0 and � � 1 in the small-rs expansion of Eq.
(2) are recovered, which implies

A0 � �0.1925 (7)

B0 �
�2
3�


10 � 3�� (8)

A0 � A1 � A2 � ax
�
1� � �0.039075 (9)

B0 � B1 � B2 �
10 � 3�

12�
, (10)

where

�
�� � 
1 � ��3/ 2 � 
1 � ��3/ 2 � 
2 �
3
4 �2 �

3
64 �4�

(11)

ax �
4

3��2
; (12)

(2) the requirement that the total energy �(rs, �) be
independent of � for rs3 � up to order O(rs

�2), thus
recovering the low-density behavior � 3 �m/rs �
n/rs

3/2 � O(rs
�2) [15] with positive m and n inde-

pendent of �. We thus have

Ai �
Di

Hi
� 0 (13)

C1

H1
�

D1G1

H1
2 �

3
4 ax (14)

C2

H2
�

D2G2

H2
2 �

3
64 ax (15)

F1 � F2 � 0. (16)
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We also fixed A1 according to the high-density limit
of the spin susceptibility [13, 16], and G2 � 0 be-
cause it turned out to be an irrelevant parameter in
our fitting procedure. In this way, we have built an
analytic model that interpolates between the exact
high- and low-density limits and has 12 free param-
eters to be fixed by a best fit to our diffusion Monte
Carlo data. We then perform a global fit (rs, �, N),
which also includes the infinite-size extrapolation
of Eq. (1), to our data set (122 data for 1 � rs � 40,
0 � � � 1, and 21 � N � 114). In this way we fix the
values of 36 free parameters, 24 of which disappear
from the final analytic expression of �c because they
concern only the N 3 � extrapolation. This fit
yields a reduced �2 of 3.8. The optimal values of the
parameters that yield the model for �c of the infinite
system are reported in Table I.

LSD Correlation Potential

The 2D LSD correlation potential �c
� for electrons

of spin � is given by

�c
�
rs, �� �

��n�c
rs, ��


�n�

� �c
rs, �� �
rs

2
��c
rs, ��

�rs

� 
� � sgn ��
��c
rs, ��

��
, (17)

where sgn � is �1 for spin-1 electrons and �1 for
spin-2 electrons. From our parametrization of �c(rs,
�) we get:

��c
rs, ��

�rs
� ax�
��

�e�
rs
1 � 
rs� � 1


rs
2

� ��0
rs� � ��1
rs��2 � ��2
rs��4, (18)

where �(�) and the constant ax are given by Eqs.
(11) and (12), respectively, and

��i
rs� �
d�i

drs
� 
Bi � 2Cirs � 3Dirs

2�

� ln�1 �
1

fi
rs�
� �


Bi � Cirs
2 � Dirs

3� f�i
rs�

fi
rs�� fi
rs� � 1

(19)

fi
rs� � Eirs � Firs
3/ 2 � Girs

2 � Hirs
3 (20)

f�i
rs� � Ei �
3
2 Firs

1/ 2 � 2Girs � 3Hirs
2. (21)

The derivative with respect to � is simply

��c
rs, ��

��
�

ax

rs

1 � e�
rs���
��

� 2�1
rs�� � 4�2
rs��3 (22)

��
�� �
3
2 
�1 � � � �1 � �� �

3
2 � �

3
16 �3. (23)

It is interesting to compare our correlation potential
with the approximations used in previous LSD cal-
culations in two dimensions. The most used 2D
LSD functional is the one given by Tanatar and
Ceperley [2], who performed diffusion Monte Carlo
simulations at � � 0 and � � 1 and gave an analytic
fit of the corresponding correlation energies. For the
� dependence, many authors [3] used the exchange-
like approximation

�c
rs, �� � �c
rs, 0� �
�
1 � ��3/ 2 � 
1 � ��3/ 2 � 2


23/ 2 � 2

� ��c
rs, 1� � �c
rs, 0�
. (24)

In Fig. 1 we compare our correlation potential (as a
function of rs and for three different values of the
spin polarization �) with this widely used Tanatar–
Ceperley plus exchangelike correlation potential.
One can see that, while for � � 0 the two potentials
are almost indistinguishable, for � � 0 there are
significant discrepancies: at � � 1, the difference
between the two potentials is �30% at rs � 1; for
lower densities this difference is lower, being 15%
at rs � 4 and 7% at rs � 10. At � � 1 the discrep-
ancies do not in fact depend on the exchangelike

TABLE I ______________________________________
Optimal-fit parameters for the correlation energy, as
parametrized in Eqs. (3) and (4).

i � 0 i � 1 i � 2

Ai �0.1925a 0.117331a 0.0234188a

Bi 0.0863136a �3.394 � 10�2 �0.037093a

Ci 0.057234 �7.66765 � 10�3 a 0.0163618a

Ei 1.0022 0.4133 1.424301
Fi �0.02069 0a 0a

Gi 0.340 6.68467 � 10�2 0a

Hi 1.747 � 10�2 7.799 � 10�4 1.163099

 1.3386

a Values obtained from exact conditions. The parameter
Di � � AiHi is not listed (see text).
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choice for the � dependence: they are exclusively
due to the corresponding correlation energy of
Tanatar and Ceperley, which differs from ours be-
tween 35% and 4% for rs � [0, 10]. To test the
intrinsic quality of the exchangelike interpolation
against our new �-interpolation scheme, we
plugged into Eq. (24) our new correlation energies
at � � 0 and � � 1. As shown in Figure 1 of Ref. [7],
the � dependence of QMC data is rather different,
especially at lower densities: at the density of the
transition to the fully polarized gas, rs � 26, the
exchangelike interpolation predicts an energy bar-
rier between the � � 0 and the � � 1 phases that is
more than an order of magnitude higher than the
QMC result.

Our correlation energy, which at � � 1 is, as said,
quite different from the Tanatar–Ceperley [2] value,
should be much closer to the true one because (1)
we included the effect of BF on the nodes, (2) we
imposed the exact high-density limit, and (3) the
infinite-size extrapolation is directly performed on
a DMC data set.

Summary and Conclusions

We have presented a new, reliable, LSD func-
tional for 2D systems, based on a new set of DMC

data for a wide range of electron densities and spin
polarizations, and on an analytic form that effi-
ciently reproduces these data and includes most of
the known high- and low-density limits. A compar-
ison of the corresponding correlation potential with
previous approximations shows, for � � 0, differ-
ences up to 30% for rs � [0, 10].

Fortran subroutines available at axtmt2.phys.
uniroma1.it/PGG/elegas.html.

ACKNOWLEDGMENTS

We acknowledge partial financial support from
MURST (the Italian Ministry for University, Re-
search and Technology) through COFIN99.

References

1. Ando, T.; Fowler, A. B.; Stern, F. Rev Mod Phys 1982, 54, 437.
2. Tanatar, B.; Ceperley, D. M. Phys Rev B 1989, 39, 5005.
3. See, e.g., Koskinen, M.; Manninen, M.; Reimann, S. M. Phys

Rev Lett 1997, 79, 1389; Reimann, S. M.; Koskinen, M.; Man-
ninen, M.; Mottelson, B. R. Phys Rev Lett 1999, 83, 3270.

4. See, e.g., Partoens, B.; Peeters, F. M. Phys Rev Lett 2000, 84,
4433; Hirose, K.; Wingreen, N. S. Phys Rev B 1999, 59, 4604.

5. Kim, Y.-H.; Lee, I.-H.; Nagaraya, S.; Leburton, J.-P.; Hood,
R. Q.; Martin, R. M. Phys Rev B 2000, 61, 5202; Pollack, L.;
Perdew, J. P. J Phys: Condens Matt 2000, 12, 1239; Garcia-
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FIGURE 1. Correlation potential for spin-up electrons
as a function of the density parameter rs and for three
different values of the spin polarization �. The present
result is compared with the exchangelike interpolation
[3] applied to the Tanatar and Ceperley data [2].
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