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The correlation energy in density functional theory can be expressed exactly in terms of the

change in the probability of finding two electrons at a given distance r12 (intracule density) when

the electron–electron interaction is multiplied by a real parameter l varying between 0

(Kohn–Sham system) and 1 (physical system). In this process, usually called adiabatic connection,

the one-electron density is (ideally) kept fixed by a suitable local one-body potential. While an

accurate intracule density of the physical system can only be obtained from expensive

wavefunction-based calculations, being able to construct good models starting from Kohn–Sham

ingredients would highly improve the accuracy of density functional calculations. To this purpose,

we investigate the intracule density in the l - N limit of the adiabatic connection. This strong-

interaction limit of density functional theory turns out to be, like the opposite non-interacting

Kohn–Sham limit, mathematically simple and can be entirely constructed from the knowledge of

the one-electron density. We develop here the theoretical framework and, using accurate

correlated one-electron densities, we calculate the intracule densities in the strong interaction limit

for few atoms. Comparison of our results with the corresponding Kohn–Sham and physical

quantities provides useful hints for building approximate intracule densities along the adiabatic

connection of density functional theory.

1. Introduction

Kohn–Sham (KS) density functional theory (DFT) (see, e.g.,

ref. 1) is a successful method for electronic structure calcula-

tions, thanks to its unique combination of low computational

cost and reasonable accuracy. In the Kohn–Sham formalism,

the total energy of a many-electron system in the external

potential V̂ne =
P

ivne(ri) is rewritten as a functional of the

one-electron density r(r),

E[r] = Ts[r] + U[r] + Exc[r] +
R
drvne(r)r(r). (1.1)

In eqn (1.1), Ts[r] is the kinetic energy of a non-interacting

system of fermions (usually called KS system) having the same

one-electron density r of the physical, interacting, system. The

Hartree energy U[r] is the classical repulsion energy, U[r] = 1
2R

dr
R
dr0r(r)r(r0)|r � r0|�1, and the exchange–correlation

3440functional Exc[r] must be approximated.

Despite its success in scientific areas ranging from material

science to biology, DFT is far from being perfect, and a huge

effort is put nowadays in trying to improve the approxima-

tions for Exc[r] (for recent reviews see, e.g., ref. 2 and 3). The

focus of a large part of the scientific community working in

this area has shifted from seeking explicit functionals of the

density (like the generalized gradient approximations—GGA),

to implicit functionals, typically using the exact exchange

Ex[r], which is only explicitly known in terms of the

Kohn–Sham orbitals fi(r) (for a recent review, see ref. 4). In

this framework, although DFT was originally formulated as a

method ‘‘without wavefunction’’, it might be natural to go

back and actually think of DFT approximations in terms of

model wavefunctions. This way of thinking can be very helpful

for building approximations, and for combining DFT with

other many-body methods (see, e.g., ref. 5–14]).

The adiabatic connection formalism (for a review, see ref.

15) is a useful tool to think of DFT functionals in terms of

wavefunctions. In its simpler and original version,16–18 the

electron–electron repulsion operator V̂ee in the N-electron

hamiltonian Ĥ (in Hartree atomic units used throughout),

Ĥ ¼ T̂ þ V̂eeþ V̂ne; T̂ ¼ �
XN
i¼1

r2
ri

2
;

V̂ee ¼
XN
i4j¼1

1

jri � rj j
; V̂ne ¼

XN
i¼1

vneðriÞ;

ð1:2Þ

is multiplied by a real parameter l, which varies between 0 and

1. At the same time, the external potential vne(r) is replaced by

another local potential, vl(r), determined by the condition

(allowed by the Hohenberg-Kohn theorems,19 if r is v-repre-

sentable for all l) that the one-electron density r(r) does not
change with l. In this way, we define a set of hamiltonians Ĥl,

Ĥl = T̂ + lV̂ee + V̂l, rl(r) = r(r) 8l (1.3)

all having the same r(r) as the one of the physical hamiltonian

of eqn (1.2). In particular, at l = 0 we have the KS

hamiltonian, i.e., the hamiltonian of a non-interacting system

of fermions with the same density of the physical system, and
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vl=0(r) = vKS(r), the familiar Kohn–Sham potential. If we

denote by Cl the ground-state wavefunctions of each hamil-

tonian Ĥl of eqn (1.3), we easily find

Ts[r] = hCl=0|T̂|Cl=0i (1.4)

Ex[r] = hCl=0|V̂ee|C
l=0i � U[r] (1.5)

Ec[r] =
R
1
0hCl|V̂ee|C

lidl � Ex[r] � U[r], (1.6)

where Cl=0 is, in most cases, a single Slater determinant

formed by the KS orbitals fi.

Eqn (1.5) and (1.6) can be rewritten in terms of the intracule

density I(r12) (also called in the DFT community spherically

and system-averaged pair density), which was first introduced

in the historical paper of Coulson and Neilson.20 Since then,

I(r12) has been used by several authors to understand electro-

nic correlation both in density functional theory (see, e.g., ref.

18, 21 and 22) and in post-Hartree–Fock methods (see, e.g.,

ref. 23–30). Given an N-electron wavefunctionC, the intracule

density I(r12) is defined as the integral of |C|2 over all variables

but r12 = |r1 � r2|,

Iðr12Þ ¼

NðN � 1Þ
2

X
s1...sN

R
jCðr12;R; r3; . . . ; rNÞj2

dOr12
4p dRdr3 . . . drN ;

ð1:7Þ

where r12 = r1 � r2, and R = 1
2
(r1 + r2). Here we have

normalized I(r12) to the number of electron pairs. The quantity

I(r12)4pr
2
12 is proportional to the probability distribution for

the electron–electron distance in the state described by the

wavefunction C. Gill and coworkers31–34 have defined an

interesting ‘‘family of intracules’’, and made the hypothesis

that the correlation energy of Hartree–Fock theory can be

approximated as a linear functional of one of these intracules.

In terms of the intracule densities Il(r12) associated to each

wavefunction Cl of the adiabatic connection of eqn (1.3), the

Kohn–Sham correlation energy Ec[r] of eqn (1.6) can be

rewritten exactly as

Ec½r� ¼
Z 1

0

dl
R
dr12

Ilðr12Þ�Il¼0ðr12Þ
r12

¼
R 1
0 dl

R1
0 dr124pr12½Ilðr12Þ � Il¼0ðr12Þ�: ð1:8Þ

Correlation in Kohn–Sham DFT is thus fully determined by

the change in the intracule density when the electron–electron

interaction is turned on with the one-electron density r(r)
fixed. The difference Il=1(r12) � Il=0(r12) determines the

correction due to correlation to the expectation of V̂ee, and

the integration over l recovers the correction to the expecta-

tion of T̂. By construction, there is no correction to the

expectation of V̂ne.

Starting from the observation that I(r12) couples to the

operator V̂ee in the same way as r(r) couples to V̂ne, i.e., that

the expectations hC|V̂ne|Ci and hC|V̂ee|Ci are given by linear

functionals of r(r) and I(r12), respectively,

hCj V̂ne jCi ¼
R
drvneðrÞrðrÞ;

hCj V̂ee jCi ¼
R
dr12

1
r12

Iðr12Þ;
ð1:9Þ

it is possible to derive an exact formalism35–39 in which a set of

effective equations for each Il(r12) along the DFT adiabatic

connection is coupled to the KS equations to generate the

correlation energy from eqn (1.8). In this computational

scheme one needs to make two approximations:

1. the exact equation for Il(r12) involves the solution of a

many-body problem for a cluster of interacting fermions,36

which is approximated with a radial Schrödinger equation

for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ilðr12Þ

p
,39 possibly divided into effective geminals

gli (r12),
35,37,40

½�r2
r12
þ wl

effðr12Þ�gli ðr12Þ ¼ eli g
l
i ðr12Þ;

Ilðr12Þ ¼
XNg

i¼1
nijgli ðr12Þj

2;
ð1:10Þ

for which one needs to choose the number Ng and the

occupancy ni;
2. an approximation for wl

eff(r12) needs to be designed.

As far as point 1 is concerned, we can say that the choice

Ng = 1 is always possible,39 and yields good results in the

uniform electron gas when combined with an approximation

for wl
eff(r12) inspired to the Fermi-hypernetted-chain ap-

proach.41 Again in the case of the uniform electron gas, the

choice of a determinant-like occupancy for the effective gem-

inals (Ng = N(N � 1)/2, ni = 1 (3) for even (odd) relative

angular momentum states) yields accurate results with much

simpler approximations for wl
eff(r12).

40,42 In general, the choice

of using localized geminals would make it easier to impose size

consistency.

Regarding point 2, the basic idea is to write wl
eff(r12) as

wl
effðr12Þ ¼ wl¼0

eff ðr12Þ þ
l
r12
þ wl

cðr12Þ: ð1:11Þ

The interaction wl=0
eff (r12) is the one that, when inserted into

eqn (1.10), yields the intracule density of the KS system,

Il=0(r12), which can be constructed by inserting the KS Slater

determinant into eqn (1.7). In this step, the analytical integrals

developed by Gill and coworkers31–34 to calculate Hartree–

Fock intracules may turn extremely useful. In eqn (1.11) the

term l/r12 ensures that the corresponding Il(r12) satisfies the

electron–electron cusp condition (see, e.g., ref. 43). We then

need to approximate wl
c(r12), an effective potential that should

essentially ‘‘tell’’ the intracule density that, while the electro-

n–electron interaction is turned on, the one-electron density

r(r) does not change. As the information on r(r) has been

‘‘washed away’’ in the integration over the center of mass R of

eqn (1.7), this constraint can be imposed only in an approx-

imate way. For two-electron systems, for which eqn (1.10) is

exact with one geminal, simple approximations (based on the

same ideas used in the uniform electron gas) for wl
c(r12) give

accurate results.35,37,38

To go one step further, that is being able to construct

approximations that work for many-electron systems of nonuni-

form density, a crucial issue is to investigate the effect on Il(r12) of

the constraint of fixed r(r) as l increases. To this purpose, in this

paper we address the following question: what happens to Il(r12)

when l - N? Although at first glance this question may seem

purely academic, there are several reasons for investigating this

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 3440–3446 | 3441



strong-interaction limit of DFT. The intracule density of the

physical system (l = 1) can be obtained only from expensive

wavefunction-based calculations (see, e.g., ref. 44–46 and refer-

ences therein), while in the l - N limit the many-electron

problem becomes mathematically simple, and we have recently

shown47 that a solution can be constructed starting from the

density r(r) only. The l-N limit tells us what is the maximum

extent to which the electrons can avoid each other without

breaking the constraint of being in the given density r(r). This
information can be very useful for constructing approximations.

Last but not least, the strong interaction limit can be used to build

interpolations between the non-interacting KS limit (l = 0)

and the l -N limit, yielding an approximation for the physical

(l = 1) system.48

This paper is organized as follows. In section II we derive

and discuss the equations needed to calculate the intracule

density in the strong-interaction limit (l - N) of DFT. In

section III, we apply the equations of section II to calculate the

l - N intracule densities of small atoms, by using accurate

correlated one-electron densities r(r) as input. The results are
then analyzed and discussed in section IV, and the last section

V is devoted to conclusions and perspectives.

2. Theory

The strong-interaction limit of DFT is defined by the l - N

limit of the hamiltonians of eqn (1.3).47,49,50 The mathematical

details of this limit can be found in ref. 47 Here, we briefly

summarize the physical ideas that lie behind the theory, only

reporting the equations that will be used in the following sections.

As l grows, the electrons repel each other more and more

strongly. However, they are forced by the external potential V̂l

of eqn (1.3) to yield the density r(r). As l - N, it can be

shown47,49,50 that, in order to keep the electrons in the density

r(r), V̂l must be proportional to l, V̂l-N - lV̂. In this limit,

the kinetic energy becomes negligible (of orders
ffiffiffi
l
p

50), and the

solution of Ĥl-N reduces to a classical equilibrium problem

for the 3N dimensional function

Epotðr1; . . . ; rNÞ ¼
XN
i4j¼1

1

jri � rj j
þ
XN
i¼1

vðriÞ;

vðrÞ ¼ lim
l!1

vlðrÞ
l

:

ð2:12Þ

The square of the corresponding wavefunction, |Cl-N|2,

becomes a distribution that is zero everywhere except in the

configurations (r(0)1 ,. . .,r(0)N ) for which Epot(r1,. . .,rN) has its

absolute minimum. Typically, for a reasonable attractive

potential v(r), Epot has a discrete set of minimizing configura-

tions. In this case, however, the density corresponding to

|Cl-N|2 would be given by a sum of peaks centered in the

minimizing positions r(0)i , r(r) p
P

id(r � r(0)i ). In order to get

a smooth density like the one we find in the quantum

mechanical problem at l = 1, we need a special potential

v(r) in eqn (2.12): the potential v(r) must make the minimum

of the 3N-dimensional function Epot degenerate over the 3-D

subspace M47

M = {r1 = r, r2 = f2(r),. . .,rN = fN(r), r A P}, (2.13)

where P is the region of space in which r(r) a 0. From the

physical point of view, the distribution |Cl-N|2, which is zero

everywhere except on M, describes a state in which the

position of one of the electrons can be freely chosen in P,

but it then fixes the positions of all the other N � 1 electrons

via the co-motion functions fi(r).
47 The strong-interaction limit

of DFT is thus the generalization of the more familiar Wigner-

crystal state to smooth densities. In the Wigner crystal state, in

fact, the constraint of having a given density is relaxed, and

r(r) becomes typically proportional to
P

id(r� r(0)i ), losing any

resemblance with the quantum mechanical l = 1 density of

atoms and molecules.

From the condition that Epot has its minimum over the

entire subspace M and that the electrons be indistinguishable,

one finds that the co-motion functions fi(r) must satisfy special

properties, which are reported in ref. 47. To determine the co-

motion functions from the density r(r), we use the observa-

tion47 that, since the position of the first electron determines

the positions of all the others, the probability of finding the

first electron in the volume element dr around the position r

must be the same as finding the ith electron in the volume

element dfi(r) around the position fi(r). This means that all the

co-motion functions fi(r) must satisfy the differential equation

r(fi(r))dfi(r) = r(r) dr, i = 2,. . .,N. (2.14)

In order to construct the co-motion functions we thus have to

find the initial conditions for the integration of (2.14) which

also satisfy the properties reported in ref. 47, and yield the

minimum of the corresponding Epot. An example of such

calculations for spherical densities is carried out in ref. 47.

The strong interaction limit of DFT is thus entirely determined

by the co-motion functions fi(r), which can be constructed

from the density via eqn (2.14).

To obtain the intracule density Il-N(r12) corresponding to

the distribution |Cl-N|2, we have to consider that the

electron–electron distance only depends on the position of

the first electron, r. By defining the N(N � 1)/2 distances dij(r)

for which |Cl-N|2 is non zero,

dij(r) = |fi(r) � fj(r)|, i, j = 1,. . .,N, ioj (2.15)

(with f1(r) � r), and by considering that each position r has a

probability 1
N
rðrÞ,47 we obtain

4pr212I
l!1ðr12Þ ¼

XN
i4j¼1

R
dr rðrÞ

N
dðr12 � dijðrÞÞ: ð2:16Þ

3. Application to atoms

We consider here the case of spherical densities, and we apply

eqn (2.16) to few atoms. When r(r) = r(r), the l - N

problem can be separated into an angular part and a radial

part.47 The distance r from the nucleus of one of the electrons

can be freely chosen, and it then determines the distances from

the nucleus of all the other N � 1 electrons via radial co-

motion functions fi(r), as well as all the relative angles aij(r)
between the electrons.47 The radial co-motion functions fi(r)

can be constructed as follows.47 Define an integer index k
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running for odd N from 1 to (N � 1)/2, and for even N from

1 to (N � 2)/2. Then

f2kðrÞ ¼
N�1e ð2k�NeðrÞÞ r � a2k
N�1e ðNeðrÞ � 2kÞ r4a2k

�

f2kþ1ðrÞ ¼
N�1e ðNeðrÞ þ 2kÞ r � aN�2k

N�1e ð2N � 2k�NeðrÞÞ r4aN�2k;

�
ð3:17Þ

where ai = Ne
�1(i),

Ne(r) =
R
r
04px

2r(x)dx, (3.18)

and Ne
�1(y) is the inverse function of Ne(r). For odd N, these

equations give all the needed N � 1 radial co-motion func-

tions, while for even N we have to add the last function,

fN(r) = Ne
�1(N � Ne(r)). (3.19)

The relative angles aij(r) between the electrons can be found by

minimizing numerically the electron–electron repulsion energyP
i4j(fi(r)

2 + fj(r)
2 � 2fi(r)fj(r)cos aij)

�1/2. The radial co-

motion functions of eqn (3.17)–(3.19), satisfy eqn (2.14) for

spherically symmetric r,

4pfi(r)
2r(fi(r))|fi0(r)|dr = 4pr2r(r)dr, (3.20)

and, together with the minimizing angles aij(r), yield the

minimum of Epot of eqn (2.12) for spherically symmetric

v(r).47 Physically, the solution of eqn (3.17)–(3.19) makes the

N electrons always be in N different spherical shells, each of

which contains, on average in the quantum mechanical pro-

blem (at l = 1), one electron. In the l - N limit, the

electrons become strictly correlated, and all fluctuations are

suppressed (see, e.g., ref. 51): the space is divided into N

regions, each of which always contains exactly one electron.

Solutions with double-shell occupancies that also satisfy eqn

(3.20) can be found, but they are maxima for the correspond-

ing Epot. They become minima in the case of harmonic

interactions (see the Appendix of ref. 47, and the note added

in proof).

For spherically symmetric densities, the electron–electron

distances of eqn (2.15) then become

dijðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðrÞ2 þ fjðrÞ2 � 2fiðrÞfjðrÞ cos aijðrÞ

q
: ð3:21Þ

We can invert eqn (3.21) (if dij(r) is non monotonous we have

to invert each monotonous branch separately), and simplify

eqn (2.16) into

4pr212I
l!1ðr12Þ ¼

XN
i4j¼1

pðd�1ij ðr12ÞÞjd 0ijðd�1ij ðr12ÞÞj
�1;

pðrÞ ¼ 4pr2rðrÞ
N

:

ð3:22Þ

As a starting point, it is instructive to analyze the simple

case of the He atom. Here, we have used the accurate varia-

tional wavefunction of ref. 52 (see also ref. 35 and 53) to

generate the density r(r), from which Il-N(r12) is constructed.

From the same accurate variational wavefunction, we have

also computed the intracules of the KS system (see ref. 35),

Il=0(r12), and of the physical system, Il=1(r12), which will be

compared to Il-N(r12). When N = 2, in the l - N limit the

relative angle between the electrons becomes always a12 = p
(maximum angular correlation), and we have only one co-

motion function, f2(r), which fully determines the electron–

electron distance,47,50

f2(r) = Ne
�1(2 � Ne(r)), d12(r) = r + f2(r). (3.23)

The function d12(r) is reported in Fig. 1. It has a minimum for

r= a1 = Ne
�1(1), the radius of the shell containing, on average

in the quantum mechanical problem, one electron. We have

f2(a1) = a1, and d12(a1) = 2a1. The two electrons, thus, never

get closer than 2a1, so that Il-N(r12 o 2a1) = 0. From the

indistinguishability of the two electrons, we have the prop-

erty47,50 f2(f2(r)) = r, which, when combined with eqn (3.20),

shows that the two invertible branches of d12(r) (corresponding

to 0 r roa1 and to r 4 a1) give the same contribution to eqn

(3.22). We can thus just invert the function d12(r) in r A [0, a1]

and multiply the result by 2. This is a general property, also

valid forN4 2:47 we can always invert the functions dij(r) in the

domain r A [0, a1], and then multiply the result by N. In Fig. 2

we report the intracule densities of the He atom for l= 0 (KS),

l = 1 (physical) and l - N. Because d12
0(a1) = 0, Il-N(r12)

Fig. 1 The electron–electron distance d12 for the He atom density in

the strong-interaction limit of DFT. d12 is, in this limit, completely

determined by the distance r from the nucleus of one of the two

electrons, d12 = d12(r). The value r = a1, for which d12(r) has its

minimum, corresponds to the radius of the sphere containing,

on average in the quantum mechanical problem, one electron,R
a1
0 4pr2r(r)dr = 1. All quantities in Hartree atomic units.

Fig. 2 The intracule density of the He atom along the linear adiabatic

connection of DFT: the three intracules correspond to three systems

with the same one-electron density r(r) and electron–electron interac-

tion l/r12. The intracules at l = 0 (KS system) and l = 1 (physical

system) have been constructed from the accurate variational wave-

function of ref. 52 (see also ref. 35 and 53). The intracule at l = N is

obtained in this work, as described in the text. All quantities are given

in Hartree atomic units.
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has an integrable divergence when r12 - 2a1
+,

4pr212I
l!1ðr12Þjr12!2aþ

1
! pða1Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p0ða1Þðr12 � 2a1Þ
p ;

pðrÞ ¼ 2pr2rðrÞ:

ð3:24Þ

Divergences come from the fact that the quantities we calcu-

late here are the distributions towards which the physical

quantities tend when l - N. This aspect is clarified with a

simple example in the Appendix of ref. 47.

Using eqn (3.17)–(3.19), we have calculated the electron–

electron distances dij(r) of eqn (3.21) for Li, Be and Ne. For the

Li atom, we have used the fully correlated density of Bunge,54

and for the Be and the Ne atoms the accurate densities of ref.

55. All calculations are done numerically, on a grid. In Fig. 3

and 4, we report dij(r) for Li and Be when 0 r r r a1.

Electrons are labeled with numbers 1, 2, 3,. . ., meaning that

electron 1 is in the shell 0 r r r a1, electron 2 is in the shell

a1 r f2(r) r a2, and so on. Correspondingly, the distances are

labeled 1–2, 1–3, etc. As discussed for the case of the He atom

(for further details see ref. 47), we only need to consider N

times this situation, since exchanging two or more electrons

always corresponds to the same physics, and thus to the same

values of the electron–electron distances.

In Fig. 5 we show the intracule density multiplied by the

volume element 4pr212 at l = 0, l = 1 and l - N for the Be

atom. The case of the Ne atom is displayed in Fig. 6, where we

show the intracule densities multiplied by 4pr12: the area under
each curve gives the expectation hCl|V̂ee|C

li. In both cases,

the KS intracules at l = 0 have been constructed from the

accurate Kohn–Sham potentials of ref. 55, while the intracules

of the physical system (l = 1) are obtained from variational

quantum Monte Carlo results.44 Integrable divergences in the

l - N intracules appear, as for the He atom case, at

electron–electron distances for which d0ij(r) = 0. Notice that,

due to the strict correlation at l - N, there is a finite

minimum distance rmin
ij 4 0 between any pair of electrons,

so that Il-N(r12) = 0 when r12 is less than the smallest of

the rmin
ij .

4. Discussion of results

The l - N limit of DFT describes the case of maximal

angular correlation and maximal radial correlation between

Fig. 3 The electron–electron distances dij for the Li atom density in

the strong-interaction limit of DFT. The distances dij are, in this limit,

completely determined by the distance r from the nucleus of one of the

electrons, dij = dij(r). The value of r is varied here between 0 and a1,

the radius of the sphere containing, on average in the quantum

mechanical problem, one electron,
R
a1
0 4pr2r(r)dr = 1. As explained

in the text, the case r 4 a1 does not need to be considered, since it

simply corresponds to interchanging two or more electrons, yielding

the same values for the electron–electron distances. All quantities are

given in Hartree atomic units.

Fig. 4 Same as Fig. 3 for the Be atom density.

Fig. 6 The intracule density of the Ne atom multiplied by 4pr12 along
the linear adiabatic connection of DFT: the three intracules corre-

spond to three systems with the same one-electron density r(r) and
electron–electron interaction l/r12. The intracule at l = 0 (KS system)

has been obtained from the accurate KS potential of ref. 55 and the

intracule at l= 1 (physical system) is taken from ref. 44. The intracule

at l = N is calculated in this work, as described in the text. The area

under each curve gives the expectation hCl|V̂ee|C
li. All quantities are

given in Hartree atomic units.

Fig. 5 The intracule density of the Be atom multiplied by the volume

element 4pr212 along the linear adiabatic connection of DFT: the three

intracules correspond to three systems with the same one-electron

density r(r) and electron–electron interaction l/r12. The intracule at

l = 0 (KS system) has been obtained from the accurate KS potential

of ref. 55 and the intracule at l= 1 (physical system) is taken from ref.

44. The intracule at l = N is calculated in this work, as described in

the text. All quantities are given in Hartree atomic units.
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the electrons, compatible with the constraint that the prob-

ability of finding one electron at postion r be equal to r(r)dr,
where the density r(r) corresponds to the quantum mechanical

hamiltonian of eqn (1.2). For atoms, we see from Fig. 2, 5 and

6 that the intracule of the physical system (l = 1) is much

closer to the KS intracule (l = 0) than to the l - N limit, as

expected for weakly correlated systems. In more correlated

situations like stretched bonds, we can expect the l= 1 case to

be more in-between the l = 0 and the l - N limits. The

investigation of such cases will be the object of future work.

What can we learn from the intracule densities in the l -

N limit? As a first step, we have reconsidered the results of ref.

35 for the He-like ions. In that work, we had shown that a

good approximation for wl
c of eqn (1.11) was given by the

screening potential of a sphere of uniform density, charge 1,

and radius �rs to be determined,

wl
c ðr12Þ � �

4p
3

�r3s

� ��1 Z
jrj��rs

l
jr� r12j

dr: ð4:25Þ

This approximation was first introduced by Overhauser for the

uniform electron gas,56 where �rs was set equal to the usual

density parameter rs, i.e., the radius of the sphere containing,

on average, one electron. In ref. 40 it was shown, by compar-

ison with quantum Monte Carlo results, that for the uniform

electron gas the Overhauser potential very accurately recovers

the short-range part (r12 r rs) of I(r12). For the He-like ions,

setting35 �r3s ¼ 3
4p�r, where �r is an average density,

�r ¼ 1
N

R
drrðrÞ2, also yields accurate results for the short-range

part of I(r12), with ‘‘on-top’’ values I(0) essentially indistin-

guishable from those coming from very accurate Hylleras-type

variational wavefunctions. Here, we realized that the values �rs
used in ref. 35 for the He-like ions are, within a few percent,

equal to the values a1 of the radii of the sphere (centered in the

nucleus) containing on average one electron, thus making eqn

(4.25) work equally well for the uniform electron gas and for

the He series, with the same choice for the screening length �rs.

As shown in the previous section, the value a1 plays a special

role in the l - N limit of the He-like ions. We can thus hope

to learn from the l - N intracules something about ‘‘multi-

ple screening lengths’’ for approximating wl
c(r12) for many-

electron systems of nonuniform density.

To this purpose, and with the idea in mind that to have a

size-consistent method we need to use localized geminals in

eqn (1.10), we have further analyzed our results by dividing

them into core–core, core–valence, and valence–valence con-

tributions, comparing the l - N and the l = 0 case. We

consider here the Be and the Ne atoms. For the l - N case,

the core–core contribution comes from the distance 1–2,

corresponding to the two electrons that are in the sphere

containing, on average in the quantum mechanical problem,

2 electrons. The distances of electrons 1 and 2 from the other

electrons define the core–valence contribution, and the rest is

the valence–valence part. For the KS system (l = 0), we have

orbitals, so the three contributions are defined in the usual

way, using the quantum mechanical shells (1s2 for core–core,

Fig. 7 Be atom: the core–core, core–valence and valence–valence

contributions to the intracule densities at l = 0 and l = N of Fig. 5.

Fig. 8 Ne atom: the core–core, core–valence and valence–valence

contributions to the intracule densities at l = 0 and l = N of Fig. 6.
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etc.). The three contibutions are shown in Fig. 7 for Be and in

Fig. 8 for Ne. In the core–valence case of Be, we see that the

extremely correlated l - N limit differs from its KS counter-

part only in the short-range part, r12 t 2.5. The valence–

valence case of Be resembles the two-electron case of the He

atom. The core–valence and the valence–valence contributions

to the Ne atom also show, essentially, correlation of short-

range type, even in the extreme l - N case. In our future

work, we plan to use these results to build and test approx-

imations for wl
c(r12).

5. Conclusions and perspectives

We have calculated, for the first time, the intracule densities

for small atoms in the strong-interaction limit of density

functional theory. Our results can be useful to better under-

stand correlation in the density functional theory framework,

and to build approximations for correlation energy func-

tionals based on intracules. Our future work on this subject

will address several points:

1. The generalization of this calculation to non-spherical

densities.

2. The study of the next leading term in the l - N limit,

thus including zero-point-motion oscillations.

3. The use of these results to fully develop the ideas of ref.

35–39, in which an approximation for the correlation energy in

density functional theory is constructed from effective

equations for the intracule density.

4. Last but not least, we will also investigate whether the

l - N limit has some useful information on conceptual

chemistry, as suggested by an anonymous referee.

Note added in proof: we have recently become aware of an

interesting, related, research work.57
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