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Based on its known exact properties and a new set of extensive fixed-node reptation quantum Monte Carlo
simulations(both with and without backflow correlations, which in this case turn out to yield negligible
improvementy we propose an analytical representatioipthe spin-summed pair-distribution function and
(ii) the spin-resolved potential energy of the ideal two-dimensional interacting electron gas for a wide range of
electron densities and spin polarization, pliii the spin-resolved pair-distribution function of the unpolarized
gas. These formulas provide an accurate reference for quantities previously not available in analytic form, and
may be relevant to semiconductor heterostructures and quantum dots both directly, in terms of phase diagram
and spin susceptibility, and indirectly, as key ingredients for the construction of new two-dimensional spin
density functionals, beyond the local approximation.
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I. INTRODUCTION AND MAIN RESULTS than local-spin-density(LSD’s) approximations for the
2DEG would, in turn, allow an almost exact description of

The two-dimensional electron ga@DEG), realized in  quantum dots, since the spatial variation of their carrier den-
semiconductor heterostructures, has been a source of lastisdy is rather weak:'°
inspiration for at least two generations of fundamental and In this paper, we exploit the known exact properties of the
applied researchetsIn recent years, for example, interest pair-distribution functiongrecalled in Sec. )land, based on
has been triggered by the experimental discovery of a metak new set of extensive fixed-node quantum Monte Carlo
lic phase at low temperatufein contrast with the scaling simulations(described in Sec. I)] we propose, in Sec. IV,
theory of localization in two dimension&D),® and, indepen- our analytic representation qfA) the spin-summed pair-
dently, by the scientific and technological progress on quandistribution function of the ideal two-dimensional interacting
tum dots, which, at semiconductor interfaces, become nothelectron gas for a wide range of electron densities and spin
ing but tiny, quasi-two-dimensional quantum digks. polarization andB) the spin-resolved pair-distribution func-

In this context, accurate predictions obtained from a sim+ion of the unpolarized gas. In Sec. V we discuss the quality
plified model, such as the ideal 2DEGtrictly 2D electrons  of such an interpolation and, finally, in Sec. VI, we evaluate
interacting via a 1 potential within a uniform, rigid, neu- the spin-resolved potential energy, of interest in the construc-
tralizing backgrounyl represent a valuable reference. For ex-tion of dynamical exchange-correlation potentials in the spin
ample, a recent analytic representation of quantum Montehannel®1” and propose the corresponding analytic repre-
Carlo correlation energiéss a function of spin polarization sentation.
¢ and coupling parametet=1/+'mnag (Wheren is the den- As a result, quantities which are relevant to the physics of
sity andag is the Bohr radiushas been immediately picked semiconductor heterostructures and quantum dots, and/or
by several authors, either because of its relevance to theepresent a key ingredient for the construction of two-
phase diagram of the 2DEGor because of the correspond- dimensional spin density functionals beyond the local ap-
ing prediction for the spin suceptibilify? or, last but not proximation, are now available in analytic forrRORTRAN
least, because the analytic representation of the correlaticsubroutines for the evaluation of the parametrized quantities
energy versus and  is a key ingredient for the density can be downloaded via the EPAPS senite.
functional theory of quantum dofs:1°

Such an interest encouraged us to extend our previous
work on energies to the spin-resolved pair-distribution func-
tions g, (r,r’) of the 2DEG, whose accuracy and availabil-  For an electronic system, the pair-distribution functions
ity in analytic form may serve a variety of purposes: theg,,(r,r’), if n,(r) is the density of electrons with spin
exchange-correlation hole and its dependence on the electren| or |, are defined as
density and spin polarization may be relevant to the physics + +
of the metal-insulator bifurcation in 2[Ref. 1) and to self- (@l (r) s (1) s (1) o (1) | D)
energy theories of the 2DE&,but is also needed for the oo (F,17) = NN (r')
estimate of the effects of the finite thickness on the spin e
susceptibility® and for the construction of generalized- where z/ff, and ¢, are the creation and annihilation field op-
gradient approximation§GGA's) or weighted-density ap- erators, respectively, and is the ground-state wave func-
proximations(WDA) of density functionals, in analogy to tion. The functiongy,,, are thus related to the probability of
the 3D casé*15The availability of density functionals better finding two electrons of prescribed spin orientations at posi-

II. DEFINITIONS AND EXACT PROPERTIES
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completely independent particlésithout exchange and cor- Uy =

relation corresponds to the conditiom,,.=1. Hartree
atomic units are used throughout this work.

For a two-dimensional uniform electron gas, the functions Sror = Syy + Soprs (12
O, Only depend orr=|r—r’|, and parametrically on the
density parametar,=1/\7n and on the spin-polarization pa-
rameter {=(n,-n;)/n. The total (spin-summey pair- S, =0, (13
distribution function is defined as

1+¢ 1-¢ 1-22 _2 r(L) k. (k>2 ’
g_( )g” ( )g” > 9 @ Soo wlarcs' 2] 2 N\ 2 o2k k)

+ 0k — 2kg), (14)

tionsr andr’. The normalization is such that the case of [ZJl(k r)} (11)
1- , 11

,:I’

For smallr, when two electrons get closer and closer, the

behavior ofg is governed by the cusp conditidfls whereJ, is the first-order Bessel functio#,is the Heaviside

step function, and.=ke\1+Z, ki=ke\1-¢. The functions
=29;(r=0yrg9), (3 grandS‘correspond to a unlform two-dimensional system of
noninteracting fermions; once the scaled variableand q
are used, they do not depend explicitly opn g*=g*(x, ),
=0,,(r=0,s0) =0, (4) S’_‘:S.X(q,lg). In V\_/hat follows, we use the name pair-
r=0 distribution function for the whole thingg=g*+g°, ex-
change plus correlationand pair-correlation function for its
P correlation-only contributiomC.
=2 ﬁgw(r,rs, g R (5) Combining Eqgs(8) and(14), we find the smally behav-
r=0 r=0 ior of the spin-summed correlation static structure factor

J
P rg”(r,rs, 0 -

d
Egov(r!rSY g)

>
mgo'a'(r!rSY g)

Equationg3) and(5) are due to the dominance of the poten-

tial term 1/r—r’| in the many-body Hamiltonian as—r’; 2 q®? 5

Eq. (4) comes from the Pauli principle. S@—0rsd)=- ;¢(§)q+ el 12 " O(@), (15
At this point, it is convenient to introduce the scaled vari- s

ablex=Kker, whereke=12/r is the Fermi wave vector of the \here

unpolarized gas.

The Fourier transforms of,, —1 are the spin-resolved V1I+{+\1-¢
static structure factor®, which, for a 2D uniform gas, are H() = 2 (16)
\/nangl * . . .
Syo (Qred) = 8,y dx( g, — 1]xJp(gX), plays the same role of the three-dimensional funcigoof
n 0 Refs. 21 and 22. As well known from the properties of Fou-

6 rier transforms, the smatj- behavior of S determines the
oscillation-averaged long-range part @fWe thus see that,
whereq=Kk/kg is a scaled variable in reciprocal space, dpd individually taken,g® and g*~1 have long-range tailsr3,
is the Bessel function of order 0. The to(@pin-summeyl  but these tails exactly cancel in the pair-distribution function

static structure factor is (exchange plus correlatipn so that g—-1=g*+g°-1 ap-
proches zero as "2,
S= _SH éVsu +1- 525”1 (7) While the long-wavelength limit of the tot&, Eq.(8), is

well known, little is known about the smadj-behavior of the
spin-resolveds, . (and hence about the long-range part of

its long-wavelengthii.e., smallg) behavior is determined by 0s0)- The conservation of the number of particles implies

the plasma collective mode

422 S, (q=0,,¢) =0. (17)
S(q— 0,0 :Zg,Tl,z’ro(qz), (8
s In Sec. IV B we discuss an approximate expression for
and thus does not depend 6n S,.(0—0,rs,{=0) consistent with our QMC results.

Usually g, (and consequentlys, /) is conventionally Finally, the spin-summed® yields the correlation part of
divided into the(known) exchange and th@unknowr) cor-  the expectation value of the Coulomb potential energy
relation terms v(rs, &) which can be obtained from the correlation energy

. . €.(rs,{) via the virial theorer®®
oo’ = gg'g" + go'g" ) (9)
ke [© _ 19 ,
g)T(l - 1, (10) 2 fo dxg:(xvr& g) - UC(rSlg) - rsars[rsec(rSlg)]- (18)
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ll. QUANTUM MONTE CARLO CALCULATION simulations for different system sizes in the unpolarized
The ground-state expectation val@of a local operator case, finite size effects on the pair-distribution function have
- e . . been estimated to be of order 0.01. The systematic bias due
O, such as.the palr—dlstrlbutlon function or the static strucg finite projection time and finite time step can be kept
ture factor, is estimated as within this level by suitable choices of the parametgrand
= . €. In our simulations, this results in paths of 501 time slices.
O =¥ (B)|OIF(BHKY(B)|Y(B)) (19 We avoid the fermion sign problem using the fixed node
using a reptation quantum Monte CarlgqRQMC)  approximation(FNA),2> whereby the paths are not allowed
algorithm?* Here W is a trial function, and¥(B)=e#"2¥  to cross the nodes of the trial function. The FNA, which
can be made sufficiently close to the exact ground sbaly ~ gives the lowest-energy upper bound consistent with the
choosing the “imaginary time large enough. nodal structure of the trial function, is the only source of
The estimate of Eq(19) is called “pure,” as opposed to uncontrolled approximation in the present calculation. In or-
the “mixed” estimate Opy=(®|O|W)/(P|W¥) usually der to gauge the sensitivity of the computed pair-distribution
adopted in connection with the diffusion Monte Carlo fgnctlon on thg nodal structure df we havel performed our
(DMC) method? More precisely, previous DMC results for 5|mulat|(_)ns using two_trlal_ functions _Wlth different nodes.
the pair-distribution function of the 2D electron §&28have Our first trial function is of the simplest Jastrow-Slater
been based on extrapolated estimated,,=20,, oM V(R=JRSR). HereJR)=II exf-u(rj)], r;j be-

- T o ing the distance between the electrorsdj, is a symmetric
~(V|OW) /(W[ W). The bias O is quadratic in the error Jastrow factor; it describes pair correlations through the

of the trial function. Such an estimate is often very accurateynction u(r), which is optimized(by minimizing the varia-

but a well converged pure estimate, as obtained in g1 energy for each density and polarization; it is always
present work, has the advantage of being independent of the,qjiive so it does not alter the nodal structure, which is

quality of the trial function¥ (except for its nodal structure, entirely determined by the other fact8(R), a product of two

see below ; ; )
The RQMC method features a discretized path integr féir:neé?g?r;?ggtggﬁ;g s;;ESP |)n compongraf plane
ity

representation of the importance-sampled imaginary time Our second trial function has the same Jastrow factor, but

propagator its nodal structure is more accurate, since it includes “back-
= _ " ion&8.30 i i
G(Ry— Rp; B) = V(Rp)(Rp|e " |Ro)/ ¥ (Ry) flow correlations by replacing fhe electron coorglnates
rj in the Slater determinants with “quasicoordinates
— P-1 .
= f dRy -+ dRe-alli-g G(R = R ), X =15+ 2 () (1 =), (22)

i#]

(20 where 7(r) is another function to be optimized for each den-
where e=B/P is the time step an is the set of the B sjty and polarization.
coordinates of theN electrons at theth step. We use the  |n a previous variational calculatihthe difference be-
standard short-time approximattn tween the pair-distribution function calculated with the
simple Slater-Jastrow and the backflow trial function was
found to be of order 0.03. Here we find that, in a fixed-node
(21 calculation, such effect is even smaller: Fig. 1 shows the

_ : “ » difference ing,; andg,,, computed with either plane-wave
where E (R =H¥(R)/V(R) is the “local ener andA Il 11 o=
:(2776)_,\% is a normalization constant. Replacgr)rgent of Eqsor backflow nodes, fors=2 and 20 at zero polarization. In

. : . the worst caselarger, lower panel these differences are
(C21)I and(2|2) [[nto a9 yields an 'nt?g"’g il/lmtenabllg toIMor_][the half as large as found in the variational c&%ayhile for
arlo evaiuation, using a generaiize etropoiis algori msmallrs(upper panelthey are much smaller than that. These

t_o{ samplg }paths in an enlarged configuration spice differences are essentially invisible on the scale of our
={Ro. .- ReJ. Oy (r,rs,¢) calculated with plane-wave nodes, some

d0\|/\?nop;Ja:rtSi:;rlgil?rt:?zqvxgrgogs;(d\?v‘?'ghSp?tlarr]i_ggcaggld#\ dsa?rl;]_con samples of which are shown in Fig. 2. As a consequence, an
o . S R . ‘analytic representation of the spin-sumnwgd,rg,{) and of
ditions. The spin-resolved pair-distribution functions are y P b Md 1, )

obtained® averaging VAN,.(r')/[N.(N,. - 8,.)2mrA] in Jy0'(r,rs,{=0) (see next Sec. lVbased on the plgne—wave
the middle slice of the pat(rr1 duringgthér sim(ﬁrlation whegre results, as the one presented here, happens to give an equally
is the volume of the simulation cell andN,.(r') ,is the good representation of the backflow results, because the dif-

feren he improved nodal structure is either compa-
number of electron pairs with distancé betweenr—-A/2 erence due to the improved nodal structure is either compa

rable or smaller than the fitting error.
andr+A/2. The structure factors are computed analogously, g

for vectors k in the reciprocal lattice of the simulation
cell, by averagingp,(k)p, (-k)/(N,N,.)*?, where p (k)
=2;exp(-ik -rj) is the density fluctuation of electrons with
spino. The total number of particles is 42, 50, 50, and 45 for  In this section we describe our analytic representations of
polarization 0, 0.48, 0.80, and 1, respectively. By repeatinghe spin-summed pair-correlation functigfi(x,rs,£) valid

é(R —R':e) = AR ~R-€Vin lI'(R)]Z/ZEe—e[EL(R')+E|_(R)]/2,

IV. ANALYTIC REPRESENTATION
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FIG. 1. Numerical difference between the spin-resolved pair- 92 _:::j:-". rs=20 £=0487 v re=20 {=08 1
distribution functionsg®,—g/"% atr=2 (upper panglandrs=20 16 ¥ P " ' — '
(lower pane), as obtained from two fixed-node simulations with 1.4 N T 1= 1
different nodal structures. The superscript indicates back{®) 1.2 "-Z:_ r S 1
or plane-wavgPW) nodes. 1 T 'zusf\‘ﬁ‘ 0 Y zu.:;?y%-
0.8 T~ T - .0 |
for 1<r,<40 and Gs<¢<1, and of the spin-resolved g'i S - ]
9c,(X,r5,0) for £=0 and 1<r,<10. These functions are 5| 27 r=40 (=048] 7. r,=40 (=08
built along the lines of Refs. 21, 22, and 31 for the 3D case. 0 “—& . . R
The strategy is the following. We build the spin-summed ° ' 2 3 4 k5 67801234 k5 678
X = Kgr X = Kgr

g® as a sum of three terms: long-range, short-range, and os-

cillatory. The long-range term is taken from the random- FIG. 2. Sample of spin-resolved pair-distribution functions as

phase approxmatlo(RPA) and multiplied b.y a.CUtOﬁ func- directly obtained from our QMC simulatior{go fitting herg.
tion which quenches its short-range contribution. The short-

range part is built according to the cusp conditions of Egs. ) _ ) c
(3)(5), as a weighted sum dff, 1| and | | terms which, in neoug, global, three_—dlmensmne{,rs,{) fit of gt(x,rg, Q)
turn, have been determined fr0 by a fitting procedure to  @nddf|(x,rs,{=0). This procedure and all the relevant equa-
the QMC results. Fot # 0, an exchangeliké dependence of tions are detailed in the next subsections.

theseoo’ short-range coefficients has been assumed. The

oscillatory part is empirical, being entirely determined by a A. Spin-summed pair-correlation function

fit to the QMC data. The analytic functiogf is also con-

strained, via Eq(18), to reproduce our parametrized corre- We parametrize the spin-summgtias

lation energy of Ref. 5. 6
The analytic parametrization of the spin-resohgd, is 9° =9 r(X) + Goscit ) IFeut(X) + e—d%z X, (23)
more difficult, because less is known about its exact proper- n=0

ties. We had to rely more heavily on our QMC data, and, for _ . .

the time being, we successfully interpolatgd only in the ~ Whereg,g is along-ranged function whose Fourier transform
unpolarized casé/=0) and forrge[1,10]. This parametri- exactly recovers Eq15), gosci is an oscillating function to
zation, combined with the one for the totgl also yields be fitted to the QMC data, and the last term on the right-hand
97,=07,=29°-¢gf,. We build g, using a functional form side (RHS) takes care of the short-range properties. The
similar to the one just described for the totdl a sum of a  function Fe,(x) quenche¥ the short-range contribution of
long-range term, a short-range term, and an oscillatory term 9Lr + Joscil)

The long-range term is obtained by a modification, consistent . .

with our QMC data, of the long-range analytic form appro- 4 —dR Loa, L 36

priate for the tota(spin-summeyjlg®. The short-range term is Fou=1-¢ (1 o+ 2d X 6d X ) (24
simply the 7| part of the totalg®. The oscillatory part is,

again, empirical. Because the short-range parts of thegbtal The parameted(rs) determines the mixing of long-range and
and ofg%l share some parameters, we performed a simultashort-range terms in E¢23).
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1. Long-range part

PHYSICAL REVIEW B 70, 115102(2004

The linear parameters, andcs will be used to constrain

The long-range part is built with the same procedure used® to yield the cor_relation energy of Ref. 5 and to.fulfill the
for the 3D case in Refs. 21, 22, and 32, and detailed ifParticle-conservation sum ruf&(q=0,rs,¢)=0], as in Ref.

Appendix A,

f
(s ) = 267072, (25

Wherev=v“§rs¢2x is another scaled variable, anb({) is
given by Eq.(16). The functionf,(v) is reported in Appendix
A.

2. Short-range part
The short-range part of owf is the last term in the RHS
of Eg. (23). We have
1-2
5 g7,(0),

Co= (26)

4/2
[97,(0) +1], (27)

C1=—
ke 2

1-2 1+7\2 1-¢\?
o (e (e
—%(1+3§2),

— 2 2 _\2
e (e (5 . e

c,=dgy+

(28)

c3=dc +

22. The parametetg(rs, {) is used to give more variational
freedom to ourg® for an accurate fit of the QMC data at
higherrs.

3. Oscillatory part

The oscillatory part of oug® is similar to the form used
by Tanatar and Ceperlé$,

o m —MoX
Joscill = X+ 18 cos(rr13x+ m4) (34)
which is able to accurately fit the QMC data at low densities.
The exponential cutoff ensures th@g. does not alter the
long-range properties embeddeddk. The parameteray,
depend on bothg and £.

4. Sum rules

As said, the role of the parametersandcs which appear
in the short-range part of ouy, is to fulfill the normalization
sum rule[$(q=0)=0] and to recover the correlation energy
€(rs, ) of Ref. 5. We obtain

15Vd\7C, — 16dC,

where aﬁ"' are the short-range coefficients of the spin-with

resolved pair-distribution functions

gUo”(X - O!rS’ g) = 2 ago-/xn (30)

and

a3’=-——aj’. (31)

The pair-correlation function at zero electron-electron dis-
tance, or “on-top” valueg$ (0)=aj'~1, has been param-

etrized as
9%, (0)=[1+(a-1.372rg+brZ+crile®s—1. (32
The parametersa=1.46,b=0.258,c=0.00037 are fitted to

the QMC results; the exact high-density slope 1.372 is taken

from Ref. 33.

As said at the beginning of this section, we determine the

spin-resolved short-range coefficients for #e0 case, and

then we assume an exchangelikeependence. This means

that in Eqs(26)~29) the values of$ (0), a', andal' only
depend orrg (not on¢), and that the coefficients,’ andas*
have the simpl€ dependence

1
al(ry )= 5 (1+0)ay(ry, (33)

with abl(rg, ) =all(rs,-0).

C4 = 80 , 35
4 457 - 128 39
3\dy7C- 8C
Co= 16037 e e (36)
457 - 128
— —
Co Civm Co 3V 306 2
Cs_ - 2_d - 4d3/2 - z_dz - C38d5/2 - ? + 2¢5rSS|_R ~ Soscills
(37)
co_C\m_C_cam_ o 15\m
°7 2yd 2d 4d®? 2d? °16d7?
- 2¢5r§ELR ~ Boscin+ \"EI’SUC, (38)
SR = f fl(U)[l - Fcu[(X)]dX, (39
0
“f
= | 00 (40)
0 X
Soscill = f goscill(X)XFcut(X)dXv (41)
0
EosciII = J gosciII(X)Fcut(X)er (42)
0

and v.(rs,{) given in Eg. (18). Equations(39—42) are
evaluated numerically for given, and .
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5. Fitting parameters

The parametersi(ry), aj'(ry, al'(ry), ay(ry, Co(rs, ),
mi(rs, ) are used to fit the QMC data. Theiyand{ depen-

dence is smooth and allows for an analytic representation of

g(x,rg, &) valid at allrge[1,40] and{ [0, 1]:

8+ 68
dirg = 1+6,r2" (43
all(ry = (= Y2re+ y2r2e s ’s, (44)
all(r) = (- yIrg+ yPr2e s, (45)
ap(rd = (1 —\yrg+ Ar2)es's, (46)
Colred) = Y (e 72 Ons, (47)
my(rg £) = piD()e s s, (48)
(2)
~ Q)
mz(rs,z)——1+ T (49)
(3) (3)
(é) +2. 7;“2 (§)TS
s6) = 50
my(re, &) L+ a0 (50)
(4) (4) 2
Mg ({) +5.36u, (f)rs
m4(rs, g) - 1+ M(24)(§)r§ (51)

The functional form of the short-range coefficierai{$” iS

PHYSICAL REVIEW B70, 115102(2004)

TABLE I. Optimal parameters for the analytic representation of
g(x,rs,0) andg%l(x,rs,FO) as described in Sec. IV.

Total g%

8,=0.293 5,=0.136

¥?=0.0586  7=0.153  4{'=0.476

(3>—o 0457 <3)—o 0427 (3>—0 229
\1=0.0377 )\2 0.123 \3=0.68
B,=0.828 =0.11 B,=445 7,=—82
p=3.69 q(ll)— 0.987 pgl)-4 74 qV=2.83
p?=0.92 q1>— 0443 p?=0044  ¢?=-0.0151
p¥=2.14 q¥=0394  pP=0045  q=-0.0299
p\¥=6.39 q=-0592 pP=27-10* o)’=-1.8-10°

gf);

yW=11 ¥)=29
1M=0.479 117=0.029
17'=0.6
v¥=1.99 1=0.0014
1M=1.437 vy=0.1

5
0%, =[09[R00 + gLl Feu®) + €S clix,  (54)

n=0

where the functiori.(x) and the parametat(r,) are given
in Egs.(24) and (43), respectively.

1. Long-range part

very similar to the one used for the 3D case in Ref. 34; the ) )
corresponding parameters are determined by S|multaneousl¥ While the long-range part of the spin-summgt] Eq.

fitting the data forgT | (see next sectignand those for the
total g°. The parametetg only comes into play at highy: its
functional form(47) makes it vanish very rapidly ag de-

creases. The same argument applies to the oscillatory part, 32

whose magnitude is determined by the parameteof Eq.
(48). The low-density limit of the parametens; andm,, 2.7

and 5.36 in Eqs(50) and (51), are taken from an oversim-
plified model of localization on the sites of a triangular

lattice3® The ¢ dependence of the paramet@f@ and ,u(m

well represented by a quadratic form

YO(Q) = B + nd%, (52

1P =p™ + g 2. (53)

The final 32 free paramete(plus 9 parameters fay‘{l, de-
tailed in the next sectigrare fitted to our data s€L00 val-
ues ofx for eachrs=1,2,5,10,20,40 and=0,0.48,0.8,1
plus those fong%l at /=0 andrg=1,2,5,10—aotal of 2800
datg, and are reported in Table I.

B. Spin-resolved pair-correlation functions (£=0)

We parametrize thé | correlation function with a func-
tional form similar to the one used for the spin-sumnggd

5), can be obtained from RPA, the spin-resolution is more
problematic. Nonetheless, RPA can give some hhesspe-
cially in thers— 0 limit. From RPA we obtain, up t®(g?),

NgNgr
S Q= 00 == e O+ gz
(55)
with £,(§)=1, &(0)=2N1+L=\1-¢/\1+Z, and &,()

=&14(=0).

TI-T|ere, we only treat thé=0 case, for which we also pro-
duced spin-resolved static structure factors with QMC. We
write the smallg part of Sfm, as the RPA result plus an
r<-dependent correction, similar to the 3D cd%ege., up to
o(a?),

3/2

S(:ro"(qg) O!rsagz 0) = _q|:% + aUu”(rS):| +

2714172
(56)

with a(rg=-ay(rg. This smallg behavior embodies the
following properties: (i) the corresponding spin-resolved
pair-distribution functiong,,(r) are more long-rangéd
than the spin-summeglr) and(ii) parallel- and antiparallel-
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spin correlations give identical contributions to the plasma
collective mode. The correctiom, | (ry) has been determined

from the QMC results in reciprocal space fost,<10, and
is well represented by

PHYSICAL REVIEW B 70, 115102(2004

5. Fitting parameters

From the global fit described for the tofgfl, we also find
the ry dependence of the coefficients' andm/*:

i ) = oS e s
a;,(rg = 0.00914;, (57) Cs(rg =y e, (68)
Thus, for the spin-resolved long-range part we use a scaling V(ll)rs
law similar to the one of Eq25), mi(rd=——7—, (69)
1 + V2 rs
f (v,aq))
_ 2l1 .
g[%{(xvr51 g) - 2¢5(§)r5%1 (58) m;l(rs) = Vg_z), (70)
the functionf,(v, @) is described in Appendix B. (3)y2
1(v, @) pp Ml (r) = v + ”2_(2?2 (71)
2. Short-range part 1+wy7rg
The short-range part c;i‘fl is the 7| part of the totalg® @
[see Eqs(26)—(29)]. We thus have mil(r) = o (72)
1] Z o ! 1+ugrg
cy' =950, (59 © o '
The values ofy;” andv; " are reported in Table I.
2
1'=—10},(0)+1 60
@ kF[g“( )+, (60 V. RESULTS
A pictorial evidence of the quality of our analytic repre-
1l =qalt 11
' =dy’ +ay, (61 sentation clearly emerges from Fig. 3, where we show our
. o analytic representation for the spin-summg(d), together
cg' =dc +ag’, (62 with the corresponding QMC data, foe=1, 2, 5, 10, 20, and

wheregf|(0), a}, andal' are given in Eqgs(32), (44), and
(45), respectively. The linear parametﬂﬁ is used to fulfill
the normalization sum rule of E(L7); the parametecl!(ry),
instead, increases the variational erxibiIitygff@, and is fit-
ted to the QMC data.

3. Oscillatory part
For 9% we use the same forifieq. (34)] of the totalg°,

1 M il 1l 1
gosciII: €2 Coims X+ m4 ) (63)

Xx+1

The parametersy depend orrg and are fitted to the QMC
data.

4, Sum rule

The sum rulg17) determines the linear parametgy,

cyt=d’clt, (64)
with

cli= o G _ciNm_c 4 3\m 15T

o o2d 4d¥? 2d® P ed? ™ 16d™
+2¢°r 38k = Shicin, (65)
slk= J T1(v, @[ = Fou(X)1dx, (66)

0
Shecil = f 9l ()XFe(X)dx. (67)
0

40 and four different values of the spin polarizatioriFigure
4, instead, shows that our analyg€(r,rg, ) smoothly inter-
polates the QMC data not only as a functionxafker, as,
e.g., shown in Fig. 3, but also as a function rgf(upper
pane) and of { (lower pane). Figure 5 summarizes similar
results forg% | atZ=0. The static structure factors f¢r0 are
reported in Fig. 6. In the upper panel, we compare the total
S(g) corresponding to our analytg® with our QMC calcu-
lation (see Sec. ll); the agreement indicates that the long-
range part(q—0 limit of S) of the analyticg® has been
accurately described. In the lower panel, we show similar
results forS;(q). We see that the long-randg— 0) spin
resolution of Eq(56) is consistent with the QMC results.
Recently, Atwal, Khalil, and Ashcroft (AKA ) have pre-
sented a parametrization of the dynamical local-field factors
(spin symmetric/ T + | | and spin antisymmetri¢T—| |) for
the =0 2D electron gas, as a function of the wave vector
and of the imaginary frequendy. Following the analysis
carried on for the 3D electron gas by Lein, Gross, and
Perdew?® Asgari et al2° have compared the wave vector
decomposition of the correlation energy resulting from the
AKA spin-symmetric local field factor with the one resulting
from our present work, based on QMC results, fge 1. In
the upper panel of our Fig. 7 we make a similar comparison
(in this case at full coupling strengtfor rg=2 andrgs=5. In
the lower panel of the same figure we also compare the re-
sults from the AKA spin-antisymmetric local-field factors.
We see that the spin-summed AKSX(q) is in fair agreement
with our result forq=<1.5, where both curves recover the
exact behavior of Eq(15). The spin-antisymmetric AKA
curves are, instead, quite different from our result, even for
smallqg. This discrepancy probably comes from an inaccurate
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FIG. 3. Spin-summed pair-distribution functiéexchange plus
correlation:g=g*+g°®, see texifor four different values of the spin-
polarization parametef, and forrg=1, 2, 5, 10, 20, and 4Qarger
rs values have stronger oscillations'he dots correspond to our

QMC data, the solid lines to our analytic representation. Error bars

are comparable with the dot size.

description of the highe behavior of theq— 0 limit of the
AKA parametrization for the spin chann€l.In particular,
Eq. (26) of AKA yields a formally divergent result when
combined with the known limiting behavitr S; (q— %)
ocq_a_

VI. SPIN-RESOLVED POTENTIAL ENERGY

The correlation part of the potential enengyr, {) of Eq.
(18) can be divided intg' T, ||, and 1| contributions, such
thatv,=vl!+vit+v]'. These spin-resolved componentsgf

PHYSICAL REVIEW B70, 115102(2004)

0
0.1 F ]
E 02l ]
[=)]
03} ]
0.4 ¥ =2
0 1 2 3 4 5

X=k|:r

FIG. 4. Spin-summed pair-correlation functiog$ from our
analytic representation. Upper panel: #r0, we showg® for rg
=2,3,4,5,7,10,15,20,30,40; stronger oscillations correspond to
higherrg values. The solid lines correspondrig-2,5,10,20,40, for
which ourg® accurately fits the QMC data; the dashed lines are the
results for intermediate values of. Lower panel: forrg=2, we
show g¢ for different values of the spin-polarization/
=0,0.3,0.48,0.7,0.8,0.9,1; more negative “on-top” valgi&
=0) correspond to lower values @f The solid lines correspond to
£=0,0.48,0.8,1, for which oug® accurately fits the QMC data.
The dashed lines correspond to intermediate values of

channel®'" They can be written as the expectation value of
the Coulomb potential ¥/on the spin-resolved®

oo (2 - 50.0./) no.no.r “ c
v (s =—= "5 | YyerXrsddx. (73
V2rg n 0

We have evaluated the RHS of E@.3) by numerical inte-
gration of our QMC data fogfm,(x,rs,g) at (=0,0.48,0.8

14 —
12}

1 L
08 |
06 |
0.4 |/
0.2 K/
0

grL(n)

X = Kgr

FIG. 5. 7| pair-distribution functioniexchange plus correlation,
see textfor (=0 andrs=1,1.5,2,3,5,7,1Qthe largerg values have
stronger oscillations The dots correspond to our QMC data for
r«=1,2,5,10; the solid lines is our analytic representation at the

are important ingredients for the study and construction oéamer, values. Dashed lines correspond to our analytic representa-
dynamical exchange-correlation potentials in the spintion for the other values of;
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. . FIG. 7. Upper panel: spin-summed correlation static structure
FIG. 6. Upper panel: totaispin-summey structure factor as  taciors from our analytic representationgffand from the Atwal,

directly obtained from our QMC simulatioriglata with error bais il and Ashcroft(Ref. 3§ (AKA ) dynamical local-field factor.
and as a Fourier transform of our analytic representatiayt ¢folid Lower panel: the same comparison is done for the spin channel

lines), for r¢=1,2,5,10,20,40. ldher peaks correspond to larger (correlation only,1 11 |). All curves are forz=0.
r.. Lower panel, same comparison for thg static structure factor:

the data with error bars are QMC simulations and the solid lines are

Fourier transforms of our analyt@fl. Here therg values are 1,2,5, FHD(D - - 19.541+¢) (76)
and 10 and the larger deviations from the noninteracting v&jye 1 153.38F(¢) — 192.46
=0 correspond to larger values.
andrg=1,2,5,10,20,40This means that the integration in @A+)InA+)+(1-)In(1-92) 5
the RHS of Eq«(73) has been truncated &t2, whereL is FQ)= 2 1n(2) +0.063@
the side of the simulation celiin our caseL/2~6). The
-0.1024*+0.03895, (77

resultingv?? are thus affected by the finite-size error, since
they correspond to systems with fixed number of particles
(see Sec. Il and an infinite-size extrapolation is not avail- and the functionsv;(¢) have been obtained by fitting our data
able in this case. One can get an idea of the magnitude gfr U(T;T(rs,§) for £=-0.8,-0.480,0.48,0.8(the negative/
such error by using the same numerical-integration proceyalues corresponding to the datg

dure for the spin-summegf, and then comparing the results

with the corresponding thermodynamic limit, the last term of

Eq. (18), combined with ouf e(r, ). The relative error be- w;(¢) =(1-¢)(-0.006 - 0.03), (78)
tween the two evaluations ot is reported in Fig. 8: it is of

the order of few percents. At=1, Fig. 8 disproves Eq.10)

of Ref. 8, which predicts a qualitatively different behavior Wy(¢) =(1-¢)(-0.01+0.03), (79
for the fully polarized system.
We have parametrized our spin—resolw{d’(rs,g) as? 002 | P
= °
0¢" (160 = Fu (t D0l 0). (74) > 0 % « U 5
<2002t :
The fractionsF,(rs,¢) for parallel spins are well repre- = Q:OCZg E
sented by Z 004t (=08 X
° =1 @
ws() 0'060 5 10 15 20 25 30 35 40
Fii(rs Q) =FP(0) + [wl(z;>rs+w2(§)r§]ln(1 +'°r’—2> y
S
(75) FIG. 8. Relative errorAuv(rs,{)/vc(rs,O)=(e—vi ") /v, be-
tweenu,, calculated using the RHS of E@L8) (with ¢ from Ref.
where the high-densit!'® is given by Seidf 5), andvT, obtained by numerical integration gf (see text
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1 k q
z= =—F A2
0.8 kreg® g2\ 2rg (A2)
f’ﬁ, 0.6 is a variable on the scale of the Thomas-Fermi wave vector
2 04 ke (which does not depend an in the 2D casg and the
- function f(z, ) has the smali expansioniindependent of)
0.2
2 1 .,
f(z—0,0)=-—z+ =22+ 0(2. (A3)
T \2
's The random-phase approximatigiRPA) exactly recovers

Egs.(A1)«(A3). As in the 3D casé? we can thus obtain the
function f(z,¢) from RPA. Its(wrong) short-range behavior
will be quenched in our parametrization gf by the cutoff
function F.(x) of Eq. (24).
w(Z) =3.61 +)". (80) We thus evaluated numericalfythe functionf(z,?) via

Equations(75)—80) completely determine the spin resolu- the standard RPA equation
tion of wvg(rg, ), since F | (rs,{)=F(rs,—¢) and F; =1 w0 2
~Fi=Fy. S‘E}pA(q,rs,D?f do— BB

In Fig. 9 we show our numerical results for the o Okdm=(B+B)
antiparallel-spin fractiorF, (rs, ), together with our fitting with
function; the relative errors on the fit 0@ (not shown are
of the same order of magnitude of those of Fig. 8. We see 2|q q .o\’
that the correlation part of the potential energy is completely B(q,w) =~ al2” R (5 + Ia) -1/{, (A5)

dominated by the | contribution, even fog as high as 0.8.

FIG. 9. Fraction off | contribution to the correlation part of the
potential energyF; =vl*/v..

(A4)
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APPENDIX A: LONG-RANGE SCALING
Equation (A7) corresponds, in real space, to a divergent

In this appendix we describe the construction of the long'short-range behavior. As in three dimensiéhsyith a suit-

range part of oug®. We follow the same procedure used for ;1o «utoff Eq.(A7) recovers the RPA high-density exnan-
the 3D case in Ref. 32, where the interested reader can fi A(AT) 9 &y €xp

: ; on of the correlation energyeX™(rs—0,0)=arpa(0)
more details and comments on the relevant physics. Here wg, + & .
briefly recall the main equations and emphasize the differ- Brea(D)rs In 1+ O(r). However, unlike the 3D case, in two

dimensions the RPA correlation energy is not exact even in
ences between the 3D and 2D cases. As for the 3Dléqhe, the rg— 0 limit.*! Thus, while in three dimensiofis?>*2the
results F’f this append|x can _be qsed in the construction of %rgez behavior off(z,{) was important to recover the exact
generalized-gradient approximation for a 2D correlation enhigh-density limit Ofe, there is no need in 2D to keep Eq
ergy functional. An important difference with Ref. 32 is that ¢ )

here we focus og°® at the physical full coupling strenght, not (A7) in our parametrization. Moreover, as in three

. — i .
on his coupling-constant average. These two quantities ar%lmensmns”,_ we find that thel'dependence df(z,_g) IS very
related by 2 si%ple relatiofsee ng(25) of Ref. 2%. weak(see Fig. 10 so that we can repladéz, {) with f(z,0)

Following Ref. 32, we seek a scaling law for the long- [thi_s is exact in the “important”_part of, i.e.,_ the smallz
range part ofg’. We call “long-range” part the oscillation- "€9ime of EQ.(A3)]. We thus define the function(z)
averaged asymptotic behavior gf for large x=Kkgr, or B(0)
equivalently, the behavior & for small g=k/ke. The sim- h(z) =1(z,00 - A(0) - — >
plest way to study this regime is to Ief approach zer@so VZ +[B(0)/A(0)]
that kg — ). From Eq.(15), we see that the seeked scaling yhere A(0)=-0.272076 andB(0)=10/7-3 correspond to
law has the form the largez expansion forz=0 of Eq.(A7). As shown in Fig.

[ 10, the functiorh(z) has the same smatlbehavior off(z, ¢),
S— 0150 =2 g71(2.0), (A1) but goes to zero whem— «, which corresponds to a less
where diverging short-range part in real space. The Fourier trans-

(A8)
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0 b = 2/, (A11)
S ffz'og) RPA) _ 9 1 3\ 1|2

0.1 1 e (Zfé,_§='1gERPA; ] bSZ_EE{F<Z>] ; (A12)
-0.15 | -""-,,,’.

0.2 1 b 37 b b 55
M b4:‘3b0{ 2/23(_'_) to 5 g/zB(_'_)
ol 2052°\4'4) " 303" 20327\4'4

0 05 1 15 2 25 3 b 37\ 2
z +—SB<—,—>+—b : A13
20827\4'4) " 37° (AL3)
FIG. 10. The functionf(z,{) [see Eq.(Al)], evaluated within
RPA, for three different values of the spin polarization paraméter __ _ __ _
Also shown: the exact smatbehavior of Eq(A3) and the func- by=-22,b,=61,b,=-64,by=3.46.  (Al4)
tion h(z) of Eq. (A8). Equationsg(A11)-(A13) guarantee that the Fourier transform
of f1(v)/v satisfies Eq(A3). I'(x) andB(x,y) are the stan-
form of h(z) defines the functiori;(v) of Eq. (25), dard gamma and beta functidhsl’(3/4)~1.225416702,
. . B(3/4,7/4~0.8472130848B(5/4,5/4 ~0.6180248924.
L) _ J h(2)zd(v2)dz, (A9)
v 0
— _ _ _ APPENDIX B: SPIN-RESOLUTION OF THE
wherev=12r$?x is the appropriate real-space scaled vari- LONG-RANGE PART (£=0)
able. The functiorf,(v) has been evaluated numerically, and
then parametrized as The long-range part ogza,(x,rs,gzo) has been simply
byo2+ v + byp¥2 + byw? + bey®2 + by approximated with Eq(58), where the functior?l(v,a)~is
fi(v) = e b§)5’2 obtained fromf,(v) of Eq. (A10) by replacingbg with bg
=2(1/7+«a), and consequently changithg according to Eq.
(A10) (Al13). In this way, the correspondin@fm,(q,rs,§:0) ex-
with actly recovers Eq(56).
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