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Based on its known exact properties and a new set of extensive fixed-node reptation quantum Monte Carlo
simulations(both with and without backflow correlations, which in this case turn out to yield negligible
improvements), we propose an analytical representation of(i) the spin-summed pair-distribution function and
(ii ) the spin-resolved potential energy of the ideal two-dimensional interacting electron gas for a wide range of
electron densities and spin polarization, plus(iii ) the spin-resolved pair-distribution function of the unpolarized
gas. These formulas provide an accurate reference for quantities previously not available in analytic form, and
may be relevant to semiconductor heterostructures and quantum dots both directly, in terms of phase diagram
and spin susceptibility, and indirectly, as key ingredients for the construction of new two-dimensional spin
density functionals, beyond the local approximation.

DOI: 10.1103/PhysRevB.70.115102 PACS number(s): 71.10.Ca, 71.15.2m

I. INTRODUCTION AND MAIN RESULTS

The two-dimensional electron gas(2DEG), realized in
semiconductor heterostructures, has been a source of lasting
inspiration for at least two generations of fundamental and
applied researchers.1 In recent years, for example, interest
has been triggered by the experimental discovery of a metal-
lic phase at low temperature,2 in contrast with the scaling
theory of localization in two dimensions(2D),3 and, indepen-
dently, by the scientific and technological progress on quan-
tum dots, which, at semiconductor interfaces, become noth-
ing but tiny, quasi-two-dimensional quantum disks.4

In this context, accurate predictions obtained from a sim-
plified model, such as the ideal 2DEG(strictly 2D electrons
interacting via a 1/r potential within a uniform, rigid, neu-
tralizing background), represent a valuable reference. For ex-
ample, a recent analytic representation of quantum Monte
Carlo correlation energies5 as a function of spin polarization
z and coupling parameterrs=1/ÎpnaB (wheren is the den-
sity andaB is the Bohr radius) has been immediately picked
by several authors, either because of its relevance to the
phase diagram of the 2DEG,6 or because of the correspond-
ing prediction for the spin suceptibility,7,8 or, last but not
least, because the analytic representation of the correlation
energy versusn and z is a key ingredient for the density
functional theory of quantum dots.4,9,10

Such an interest encouraged us to extend our previous
work on energies to the spin-resolved pair-distribution func-
tionsgss8sr ,r 8d of the 2DEG, whose accuracy and availabil-
ity in analytic form may serve a variety of purposes: the
exchange-correlation hole and its dependence on the electron
density and spin polarization may be relevant to the physics
of the metal-insulator bifurcation in 2D(Ref. 11) and to self-
energy theories of the 2DEG,12 but is also needed for the
estimate of the effects of the finite thickness on the spin
susceptibility13 and for the construction of generalized-
gradient approximations(GGA’s) or weighted-density ap-
proximations(WDA) of density functionals, in analogy to
the 3D case.14,15The availability of density functionals better

than local-spin-density(LSD’s) approximations for the
2DEG would, in turn, allow an almost exact description of
quantum dots, since the spatial variation of their carrier den-
sity is rather weak.4,10

In this paper, we exploit the known exact properties of the
pair-distribution functions(recalled in Sec. II) and, based on
a new set of extensive fixed-node quantum Monte Carlo
simulations(described in Sec. III), we propose, in Sec. IV,
our analytic representation of(A) the spin-summed pair-
distribution function of the ideal two-dimensional interacting
electron gas for a wide range of electron densities and spin
polarization and(B) the spin-resolved pair-distribution func-
tion of the unpolarized gas. In Sec. V we discuss the quality
of such an interpolation and, finally, in Sec. VI, we evaluate
the spin-resolved potential energy, of interest in the construc-
tion of dynamical exchange-correlation potentials in the spin
channel16,17 and propose the corresponding analytic repre-
sentation.

As a result, quantities which are relevant to the physics of
semiconductor heterostructures and quantum dots, and/or
represent a key ingredient for the construction of two-
dimensional spin density functionals beyond the local ap-
proximation, are now available in analytic form.FORTRAN

subroutines for the evaluation of the parametrized quantities
can be downloaded via the EPAPS service.18

II. DEFINITIONS AND EXACT PROPERTIES

For an electronic system, the pair-distribution functions
gss8sr ,r 8d, if nssr d is the density of electrons with spins
=↑ or ↓, are defined as

gss8sr ,r 8d =
kFucs

†sr dcs8
† sr 8dcs8sr 8dcssr duFl

nssr dns8sr 8d
, s1d

wherecs
† and cs are the creation and annihilation field op-

erators, respectively, andF is the ground-state wave func-
tion. The functionsgss8 are thus related to the probability of
finding two electrons of prescribed spin orientations at posi-
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tions r and r 8. The normalization is such that the case of
completely independent particles(without exchange and cor-
relation) corresponds to the conditiongss8=1. Hartree
atomic units are used throughout this work.

For a two-dimensional uniform electron gas, the functions
gss8 only depend onr = ur −r 8u, and parametrically on the
density parameterrs=1/Îpn and on the spin-polarization pa-
rameter z=sn↑−n↓d /n. The total (spin-summed) pair-
distribution function is defined as

g = S1 + z

2
D2

g↑↑ + S1 − z

2
D2

g↓↓ +
1 − z2

2
g↑↓. s2d

For small r, when two electrons get closer and closer, the
behavior ofgss8 is governed by the cusp conditions19

U ]

] r
g↑↓sr,rs,zdU

r=0
= 2g↑↓sr = 0,rs,zd, s3d

U ]

] r
gsssr,rs,zdU

r=0
= gsssr = 0,rs,zd = 0, s4d

U ]3

] r3gsssr,rs,zdU
r=0

= 2U ]2

] r2gsssr,rs,zdU
r=0

. s5d

Equations(3) and(5) are due to the dominance of the poten-
tial term 1/ur −r 8u in the many-body Hamiltonian asr → r 8;
Eq. (4) comes from the Pauli principle.

At this point, it is convenient to introduce the scaled vari-
ablex=kFr, wherekF=Î2/rs is the Fermi wave vector of the
unpolarized gas.

The Fourier transforms ofgss8−1 are the spin-resolved
static structure factors,20 which, for a 2D uniform gas, are

Sss8sq,rs,zd = dss8 +
Însns8

n
E

0

`

dxfgss8 − 1gxJ0sqxd,

s6d

whereq=k/kF is a scaled variable in reciprocal space, andJ0
is the Bessel function of order 0. The total(spin-summed)
static structure factor is

S=
1 + z

2
S↑↑ +

1 − z

2
S↓↓ + Î1 − z2S↑↓, s7d

its long-wavelength(i.e., small-q) behavior is determined by
the plasma collective mode20

Ssq → 0,rs,zd =
q3/2

23/4rs
1/2 + Osq2d, s8d

and thus does not depend onz.
Usually gss8 (and consequentlySss8) is conventionally

divided into the(known) exchange and the(unknown) cor-
relation terms

gss8 = gss8
x + gss8

c , s9d

g↑↓
x = 1, s10d

gss
x = 1 −F2J1skF

srd
kF

sr
G2

, s11d

Sss8 = Sss8
x + Sss8

c , s12d

S↑↓
x = 0, s13d

Sss
x =

2

p
FarcsinS k

2kF
sD +

k

2kF
sÎ1 −S k

2kF
sD2Gus2kF

s − kd

+ usk − 2kF
sd, s14d

whereJ1 is the first-order Bessel function,u is the Heaviside
step function, andkF

↑ =kF
Î1+z, kF

↓ =kF
Î1−z. The functions

gx andSx correspond to a uniform two-dimensional system of
noninteracting fermions; once the scaled variablesx and q
are used, they do not depend explicitly onrs: gx=gxsx,zd,
Sx=Sxsq,zd. In what follows, we use the name pair-
distribution function for the whole thing(g=gx+gc, ex-
change plus correlation), and pair-correlation function for its
correlation-only contributiongc.

Combining Eqs.(8) and (14), we find the small-q behav-
ior of the spin-summed correlation static structure factor

Scsq → 0,rs,zd = −
2

p
fszdq +

q3/2

23/4rs
1/2 + Osq2d, s15d

where

fszd =
Î1 + z + Î1 − z

2
s16d

plays the same role of the three-dimensional functionf of
Refs. 21 and 22. As well known from the properties of Fou-
rier transforms, the small-q behavior of S determines the
oscillation-averaged long-range part ofg. We thus see that,
individually taken,gc andgx−1 have long-range tails~r−3;
but these tails exactly cancel in the pair-distribution function
(exchange plus correlation), so that g−1=gx+gc−1 ap-
proches zero asr−7/2.

While the long-wavelength limit of the totalS, Eq. (8), is
well known, little is known about the small-q behavior of the
spin-resolvedSss8 (and hence about the long-range part of
gss8). The conservation of the number of particles implies

Sss8sq = 0,rs,zd = 0. s17d

In Sec. IV B we discuss an approximate expression for
Sss8sq→0,rs,z=0d consistent with our QMC results.

Finally, the spin-summedgc yields the correlation part of
the expectation value of the Coulomb potential energy
vcsrs,zd which can be obtained from the correlation energy
ecsrs,zd via the virial theorem23

kF

2
E

0

`

dxgcsx,rs,zd = vcsrs,zd =
1

rs

]

] rs
frs

2ecsrs,zdg. s18d
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III. QUANTUM MONTE CARLO CALCULATION

The ground-state expectation valueO of a local operator

Ô, such as the pair-distribution function or the static struc-
ture factor, is estimated as

O = kCsbduÔuCsbdl/kCsbduCsbdl s19d

using a reptation quantum Monte Carlo(RQMC)
algorithm.24 Here C is a trial function, andCsbd=e−bH/2C
can be made sufficiently close to the exact ground stateF by
choosing the “imaginary time”b large enough.

The estimate of Eq.(19) is called “pure,” as opposed to

the “mixed” estimate Omix=kFuÔuCl / kF uCl usually
adopted in connection with the diffusion Monte Carlo
(DMC) method.25 More precisely, previous DMC results for
the pair-distribution function of the 2D electron gas26–28have
been based on extrapolated estimatesOext=2Omix

−kCuÔuCl / kC uCl. The bias inOext is quadratic in the error
of the trial function. Such an estimate is often very accurate,
but a well converged pure estimate, as obtained in the
present work, has the advantage of being independent of the
quality of the trial functionC (except for its nodal structure,
see below).

The RQMC method features a discretized path integral
representation of the importance-sampled imaginary time
propagator

G̃sR0 → RP;bd = CsRPdkRPue−bHuR0l/CsR0d

=E dR1 ¯ dRP−1Pi=0
P−1G̃sRi → Ri+1;ed,

s20d

wheree=b /P is the time step andRi is the set of the 2N
coordinates of theN electrons at theith step. We use the
standard short-time approximation25

G̃sR→ R8;ed . Ae−fR8 − R − e ¹ ln CsRdg2/2ee−efELsR8d+ELsRdg/2,

s21d

where ELsRd=HCsRd /CsRd is the “local energy” andA
=s2ped−N is a normalization constant. Replacement of Eqs.
(21) and(22) into (19) yields an integral amenable to Monte
Carlo evaluation, using a generalized Metropolis algorithm
to sample paths in an enlarged configuration spaceX
=hR0, . . . ,RPj.

In our simulations we considerN↑ spin-up andN↓ spin-
down particles in a square box with periodic boundary con-
ditions. The spin-resolved pair-distribution functions are
obtained29 averaging VdNss8sr8d / fNssNs8−dss8d2prDg in
the middle slice of the path during the simulation, whereV
is the volume of the simulation cell anddNss8sr8d is the
number of electron pairs with distancer8 betweenr −D /2
andr +D /2. The structure factors are computed analogously,
for vectors k in the reciprocal lattice of the simulation
cell, by averagingrsskdrs8s−kd / sNsNs8d

1/2, where rsskd
=o jexps−ik ·r jd is the density fluctuation of electrons with
spins. The total number of particles is 42, 50, 50, and 45 for
polarization 0, 0.48, 0.80, and 1, respectively. By repeating

simulations for different system sizes in the unpolarized
case, finite size effects on the pair-distribution function have
been estimated to be of order 0.01. The systematic bias due
to finite projection time and finite time step can be kept
within this level by suitable choices of the parametersb and
e. In our simulations, this results in paths of 501 time slices.

We avoid the fermion sign problem using the fixed node
approximation(FNA),25 whereby the paths are not allowed
to cross the nodes of the trial function. The FNA, which
gives the lowest-energy upper bound consistent with the
nodal structure of the trial function, is the only source of
uncontrolled approximation in the present calculation. In or-
der to gauge the sensitivity of the computed pair-distribution
function on the nodal structure ofC, we have performed our
simulations using two trial functions with different nodes.

Our first trial function is of the simplest Jastrow-Slater
form CsRd=JsRdSsRd. Here JsRd=Pi, j expf−usr ijdg, r ij be-
ing the distance between the electronsi and j , is a symmetric
Jastrow factor; it describes pair correlations through the
function usrd, which is optimized(by minimizing the varia-
tional energy) for each density and polarization; it is always
positive, so it does not alter the nodal structure, which is
entirely determined by the other factorSsRd, a product of two
Slater determinants(one for each spin component) of plane-
wave one-particle orbitals exps−ik i ·r jd.

Our second trial function has the same Jastrow factor, but
its nodal structure is more accurate, since it includes “back-
flow” correlations28,30 by replacing the electron coordinates
r j in the Slater determinants with “quasicoordinates”

x j = r j + o
iÞ j

hsr ijdsr i − r jd, s22d

wherehsrd is another function to be optimized for each den-
sity and polarization.

In a previous variational calculation28 the difference be-
tween the pair-distribution function calculated with the
simple Slater-Jastrow and the backflow trial function was
found to be of order 0.03. Here we find that, in a fixed-node
calculation, such effect is even smaller: Fig. 1 shows the
difference ing↑↑ and g↑↓, computed with either plane-wave
or backflow nodes, forrs=2 and 20 at zero polarization. In
the worst case(large rs, lower panel) these differences are
half as large as found in the variational case,28 while for
small rs (upper panel) they are much smaller than that. These
differences are essentially invisible on the scale of our
gss8sr ,rs,zd calculated with plane-wave nodes, some
samples of which are shown in Fig. 2. As a consequence, an
analytic representation of the spin-summedgsr ,rs,zd and of
gss8sr ,rs,z=0d (see next Sec. IV) based on the plane-wave
results, as the one presented here, happens to give an equally
good representation of the backflow results, because the dif-
ference due to the improved nodal structure is either compa-
rable or smaller than the fitting error.

IV. ANALYTIC REPRESENTATION

In this section we describe our analytic representations of
the spin-summed pair-correlation functiongcsx,rs,zd valid
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for 1ø rsø40 and 0øzø1, and of the spin-resolved
gss8

c sx,rs,zd for z=0 and 1ø rsø10. These functions are
built along the lines of Refs. 21, 22, and 31 for the 3D case.

The strategy is the following. We build the spin-summed
gc as a sum of three terms: long-range, short-range, and os-
cillatory. The long-range term is taken from the random-
phase approximation(RPA) and multiplied by a cutoff func-
tion which quenches its short-range contribution. The short-
range part is built according to the cusp conditions of Eqs.
(3)–(5), as a weighted sum of↑↑, ↑↓ and↓↓ terms which, in
turn, have been determined forz=0 by a fitting procedure to
the QMC results. ForzÞ0, an exchangelikez dependence of
thesess8 short-range coefficients has been assumed. The
oscillatory part is empirical, being entirely determined by a
fit to the QMC data. The analytic functiongc is also con-
strained, via Eq.(18), to reproduce our parametrized corre-
lation energy of Ref. 5.

The analytic parametrization of the spin-resolvedgss8
c is

more difficult, because less is known about its exact proper-
ties. We had to rely more heavily on our QMC data, and, for
the time being, we successfully interpolatedg↑↓

c only in the
unpolarized casesz=0d and for rsP f1,10g. This parametri-
zation, combined with the one for the totalgc also yields
g↑↑

c =g↓↓
c =2gc−g↑↓

c . We build g↑↓
c using a functional form

similar to the one just described for the totalgc: a sum of a
long-range term, a short-range term, and an oscillatory term.
The long-range term is obtained by a modification, consistent
with our QMC data, of the long-range analytic form appro-
priate for the total(spin-summed) gc. The short-range term is
simply the ↑↓ part of the totalgc. The oscillatory part is,
again, empirical. Because the short-range parts of the totalgc

and ofg↑↓
c share some parameters, we performed a simulta-

neous, global, three-dimensionalsx,rs,zd fit of gcsx,rs,zd
andg↑↓

c sx,rs,z=0d. This procedure and all the relevant equa-
tions are detailed in the next subsections.

A. Spin-summed pair-correlation function

We parametrize the spin-summedgc as

gc = fgLRsxd + goscillsxdgFcutsxd + e−dx2o
n=0

6

cnx
n, s23d

wheregLR is a long-ranged function whose Fourier transform
exactly recovers Eq.(15), goscill is an oscillating function to
be fitted to the QMC data, and the last term on the right-hand
side (RHS) takes care of the short-range properties. The
function Fcutsxd quenches22 the short-range contribution of
sgLR+goscilld,

Fcut = 1 −e−dx2S1 + dx2 +
1

2
d2x4 +

1

6
d3x6D . s24d

The parameterdsrsd determines the mixing of long-range and
short-range terms in Eq.(23).

FIG. 1. Numerical difference between the spin-resolved pair-
distribution functionsgss8

BF −gss8
PW at rs=2 (upper panel) and rs=20

(lower panel), as obtained from two fixed-node simulations with
different nodal structures. The superscript indicates backflow(BF)
or plane-wave(PW) nodes.

FIG. 2. Sample of spin-resolved pair-distribution functions as
directly obtained from our QMC simulations(no fitting here).
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1. Long-range part

The long-range part is built with the same procedure used
for the 3D case in Refs. 21, 22, and 32, and detailed in
Appendix A,

gLRsx,rs,zd = 2f5szdrs
2 f1svd

x
, s25d

where v=Î2rsf
2x is another scaled variable, andfszd is

given by Eq.(16). The functionf1svd is reported in Appendix
A.

2. Short-range part

The short-range part of ourgc is the last term in the RHS
of Eq. (23). We have

c0 =
1 − z2

2
g↑↓

c s0d, s26d

c1 =
2

kF

1 − z2

2
fg↑↓

c s0d + 1g, s27d

c2 = dc0 +
1 − z2

2
a2

↑↓ + S1 + z

2
D2

a2
↑↑ + S1 − z

2
D2

a2
↓↓

−
1

8
s1 + 3z2d, s28d

c3 = dc1 +
1 − z2

2
a3

↑↓ + S1 + z

2
D2

a3
↑↑ + S1 − z

2
D2

a3
↓↓, s29d

where an
ss8 are the short-range coefficients of the spin-

resolved pair-distribution functions

gss8sx → 0,rs,zd = o
n

an
ss8xn s30d

and

a3
ss =

2

3kF
a2

ss. s31d

The pair-correlation function at zero electron-electron dis-
tance, or “on-top” valueg↑↓

c s0d;a0
↑↓−1, has been param-

etrized as

g↑↓
c s0d = f1 + sa − 1.372drs + brs

2 + crs
3ge−ars − 1. s32d

The parametersa=1.46, b=0.258,c=0.00037 are fitted to
the QMC results; the exact high-density slope 1.372 is taken
from Ref. 33.

As said at the beginning of this section, we determine the
spin-resolved short-range coefficients for thez=0 case, and
then we assume an exchangelikez dependence. This means
that in Eqs.(26)–(29) the values ofg↑↓

c s0d, a2
↑↓, anda3

↑↓ only
depend onrs (not onz), and that the coefficientsa2

↑↑ anda2
↓↓

have the simplez dependence

a2
↑↑srs,zd =

1

4
s1 + zdapsrsd, s33d

with a2
↓↓srs,zd=a2

↑↑srs,−zd.

The linear parametersc4 andc5 will be used to constrain
gc to yield the correlation energy of Ref. 5 and to fulfill the
particle-conservation sum rulefSsq=0,rs,zd=0g, as in Ref.
22. The parameterc6srs,zd is used to give more variational
freedom to ourgc for an accurate fit of the QMC data at
higher rs.

3. Oscillatory part

The oscillatory part of ourgc is similar to the form used
by Tanatar and Ceperley,26

goscill =
m1

x + 1
e−m2x cossm3x + m4d s34d

which is able to accurately fit the QMC data at low densities.
The exponential cutoff ensures thatgoscill does not alter the
long-range properties embedded ingLR. The parametersmi
depend on bothrs andz.

4. Sum rules

As said, the role of the parametersc4 andc5 which appear
in the short-range part of ourgc is to fulfill the normalization
sum rulefScsq=0d=0g and to recover the correlation energy
ecsrs,zd of Ref. 5. We obtain

c4 = 8d215ÎdÎpCe − 16dCs

45p − 128
, s35d

c5 = 16d33ÎdÎpCs − 8Ce

45p − 128
, s36d

with

Cs = −
c0

2d
−

c1
Îp

4d3/2 −
c2

2d2 − c3
3Îp

8d5/2 −
3c6

d4 + 2f5rs
2sLR − soscill,

s37d

Ce = −
c0

Îp

2Îd
−

c1

2d
−

c2
Îp

4d3/2 −
c3

2d2 − c6
15

16

Îp

d7/2

− 2f5rs
2ELR − Eoscill + Î2rsvc, s38d

sLR =E
0

`

f1svdf1 − Fcutsxdgdx, s39d

ELR =E
0

` f1svd
x

Fcutsxddx, s40d

soscill =E
0

`

goscillsxdxFcutsxddx, s41d

Eoscill =E
0

`

goscillsxdFcutsxddx, s42d

and vcsrs,zd given in Eq. (18). Equations (39)–(42) are
evaluated numerically for givenrs andz.
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5. Fitting parameters

The parametersdsrsd, a2
↑↓srsd, a3

↑↓srsd, apsrsd, c6srs,zd,
misrs,zd are used to fit the QMC data. Theirrs andz depen-
dence is smooth and allows for an analytic representation of
gcsx,rs,zd valid at all rsP f1,40g andzP f0,1g:

dsrsd =
d1 + d2rs

2

1 + d2rs
2 , s43d

a2
↑↓srsd = s− g1

s2drs + g2
s2drs

2de−g3
s2drs, s44d

a3
↑↓srsd = s− g1

s3drs + g2
s3drs

2de−g3
s3drs, s45d

apsrsd = s1 − l1rs + l2rs
2de−l3rs, s46d

c6srs,zd = g1
s6dszde−g2

s6dszd/rs
2
, s47d

m1srs,zd = m1
s1dszde−m2

s1dszd/rs, s48d

m2srs,zd =
m1

s2dszd
1 + m2

s2dszdrs

, s49d

m3srs,zd =
m1

s3dszd + 2.7m2
s3dszdrs

1 + m2
s3dszdrs

, s50d

m4srs,zd =
m1

s4dszd + 5.36m2
s4dszdrs

2

1 + m2
s4dszdrs

2 . s51d

The functional form of the short-range coefficientsan
ss8 is

very similar to the one used for the 3D case in Ref. 34; the
corresponding parameters are determined by simultaneously
fitting the data forg↑↓

c (see next section) and those for the
total gc. The parameterc6 only comes into play at highrs: its
functional form(47) makes it vanish very rapidly asrs de-
creases. The same argument applies to the oscillatory part,
whose magnitude is determined by the parameterm1 of Eq.
(48). The low-density limit of the parametersm3 andm4, 2.7
and 5.36 in Eqs.(50) and (51), are taken from an oversim-
plified model of localization on the sites of a triangular
lattice.35 Thez dependence of the parametersgi

s6d andmi
snd is

well represented by a quadratic form

gi
s6dszd = bi + hiz

2, s52d

mi
sndszd = pi

snd + qi
sndz2. s53d

The final 32 free parameters(plus 9 parameters forg↑↓
c , de-

tailed in the next section) are fitted to our data set(100 val-
ues ofx for eachrs=1,2,5,10,20,40 andz=0,0.48,0.8,1
plus those forg↑↓

c at z=0 andrs=1,2,5,10—atotal of 2800
data), and are reported in Table I.

B. Spin-resolved pair-correlation functions „z=0…

We parametrize the↑↓ correlation function with a func-
tional form similar to the one used for the spin-summedgc

g↑↓
c = fgLR

↑↓ sxd + goscill
↑↓ sxdgFcutsxd + e−dx2o

n=0

5

cn
↑↓xn, s54d

where the functionFcutsxd and the parameterdsrsd are given
in Eqs.(24) and (43), respectively.

1. Long-range part

While the long-range part of the spin-summedgc, Eq.
(25), can be obtained from RPA, the spin-resolution is more
problematic. Nonetheless, RPA can give some hints,31 espe-
cially in the rs→0 limit. From RPA we obtain, up toOsq2d,

Sss8
csRPAdsq → 0,rs,zd = −

q

p
jss8szd +

q3/2

23/4rs
1/2

Însns8

n
,

s55d

with j↑↓szd=1, j↑↑szd=2/Î1+z−Î1−z /Î1+z, and j↓↓szd
=j↑↑s−zd.

Here, we only treat thez=0 case, for which we also pro-
duced spin-resolved static structure factors with QMC. We
write the small-q part of Sss8

c as the RPA result plus an
rs-dependent correction, similar to the 3D case,36 i.e., up to
Osq2d,

Sss8
c sq → 0,rs,z = 0d = − qF 1

p
+ ass8srsdG +

q3/2

27/4rs
1/2,

s56d

with a↑↑srsd=−a↑↓srsd. This small-q behavior embodies the
following properties: (i) the corresponding spin-resolved
pair-distribution functiongss8srd are more long-ranged37

than the spin-summedgsrd and(ii ) parallel- and antiparallel-

TABLE I. Optimal parameters for the analytic representation of
gcsx,rs,zd andg↑↓

c sx,rs,z=0d as described in Sec. IV.

Total gc:

d1=0.293 d2=0.136

g1
s2d=0.0586 g2

s2d=0.153 g3
s2d=0.476

g1
s3d=0.0457 g2

s3d=0.0427 g3
s3d=0.229

l1=0.0377 l2=0.123 l3=0.68

b1=0.828 h1=0.11 b2=445 h2=−82

p1
s1d=3.69 q1

s1d=−0.987 p2
s1d=4.74 q2

s1d=2.83

p1
s2d=0.92 q1

s2d=−0.443 p2
s2d=0.044 q2

s2d=−0.0151

p1
s3d=2.14 q1

s3d=0.394 p2
s3d=0.045 q2

s3d=−0.0299

p1
s4d=6.39 q1

s4d=−0.592 p2
s4d=2.7·10−4 q2

s4d=−1.8·10−4

g↑↓
c :

g1
s5d=1.1 g2

s5d=29

n1
s1d=0.479 n2

s1d=0.029

n1
s2d=0.6

n1
s3d=1.99 n2

s3d=0.0014

n1
s4d=1.437 n2

s4d=0.1
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spin correlations give identical contributions to the plasma
collective mode. The correctiona↑↓srsd has been determined
from the QMC results in reciprocal space for 1ø rsø10, and
is well represented by

a↑↓srsd = 0.00914rs. s57d

Thus, for the spin-resolved long-range part we use a scaling
law similar to the one of Eq.(25),

gLR
↑↓ sx,rs,zd = 2f5szdrs

2 f̃1sv,a↑↓d
x

; s58d

the function f̃1sv ,ad is described in Appendix B.

2. Short-range part

The short-range part ofg↑↓
c is the ↑↓ part of the totalgc

[see Eqs.(26)–(29)]. We thus have

c0
↑↓ = g↑↓

c s0d, s59d

c1
↑↓ =

2

kF
fg↑↓

c s0d + 1g, s60d

c2
↑↓ = dc0

↑↓ + a2
↑↓, s61d

c3
↑↓ = dc1

↑↓ + a3
↑↓, s62d

whereg↑↓
c s0d, a2

↑↓, anda3
↑↓ are given in Eqs.(32), (44), and

(45), respectively. The linear parameterc4
↑↓ is used to fulfill

the normalization sum rule of Eq.(17); the parameterc5
↑↓srsd,

instead, increases the variational flexibility ofg↑↓
c , and is fit-

ted to the QMC data.

3. Oscillatory part

For g↑↓
c we use the same form[Eq. (34)] of the totalgc,

goscill
↑↓ =

m1
↑↓

x + 1
e−m2

↑↓x cossm3
↑↓x + m4

↑↓d. s63d

The parametersmi
↑↓ depend onrs and are fitted to the QMC

data.

4. Sum rule

The sum rule(17) determines the linear parameterc4
↑↓,

c4
↑↓ = d3Cs

↑↓, s64d

with

Cs
↑↓ = −

c0
↑↓

2d
−

c1
↑↓Îp

4d3/2 −
c2
↑↓

2d2 − c3
↑↓ 3Îp

8d5/2 − c5
↑↓ 15Îp

16d7/2

+ 2f5rs
2sLR

↑↓ − soscill
↑↓ , s65d

sLR
↑↓ =E

0

`

f̃1sv,a↑↓df1 − Fcutsxdgdx, s66d

soscill
↑↓ =E

0

`

goscill
↑↓ sxdxFcutsxddx. s67d

5. Fitting parameters

From the global fit described for the totalgc, we also find
the rs dependence of the coefficientsc5

↑↓ andmi
↑↓:

c5
↑↓srsd = g1

s5de−g2
s5d/rs

2
, s68d

m1
↑↓srsd =

n1
s1drs

1 + n2
s1drs

, s69d

m2
↑↓srsd = n1

s2d, s70d

m3
↑↓srsd = n1

s3d +
n2

s3drs
2

1 + n2
s3drs

2 , s71d

m4
↑↓srsd =

n1
s4d

1 + n2
s4drs

. s72d

The values ofgi
s5d andni

snd are reported in Table I.

V. RESULTS

A pictorial evidence of the quality of our analytic repre-
sentation clearly emerges from Fig. 3, where we show our
analytic representation for the spin-summedgsrd, together
with the corresponding QMC data, forrs=1, 2, 5, 10, 20, and
40 and four different values of the spin polarizationz. Figure
4, instead, shows that our analyticgcsr ,rs,zd smoothly inter-
polates the QMC data not only as a function ofx=kFr, as,
e.g., shown in Fig. 3, but also as a function ofrs (upper
panel) and of z (lower panel). Figure 5 summarizes similar
results forg↑↓

c at z=0. The static structure factors forz=0 are
reported in Fig. 6. In the upper panel, we compare the total
Ssqd corresponding to our analyticgc with our QMC calcu-
lation (see Sec. III); the agreement indicates that the long-
range part(q→0 limit of S) of the analyticgc has been
accurately described. In the lower panel, we show similar
results forS↑↓sqd. We see that the long-rangesq→0d spin
resolution of Eq.(56) is consistent with the QMC results.

Recently, Atwal, Khalil, and Ashcroft38 (AKA ) have pre-
sented a parametrization of the dynamical local-field factors
(spin symmetric↑↑ + ↓↓ and spin antisymmetric↑↑−↓↓) for
the z=0 2D electron gas, as a function of the wave vectorq
and of the imaginary frequencyiv. Following the analysis
carried on for the 3D electron gas by Lein, Gross, and
Perdew,39 Asgari et al.40 have compared the wave vector
decomposition of the correlation energy resulting from the
AKA spin-symmetric local field factor with the one resulting
from our present work, based on QMC results, forrs=1. In
the upper panel of our Fig. 7 we make a similar comparison
(in this case at full coupling strength) for rs=2 andrs=5. In
the lower panel of the same figure we also compare the re-
sults from the AKA spin-antisymmetric local-field factors.
We see that the spin-summed AKAScsqd is in fair agreement
with our result forq&1.5, where both curves recover the
exact behavior of Eq.(15). The spin-antisymmetric AKA
curves are, instead, quite different from our result, even for
smallq. This discrepancy probably comes from an inaccurate
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description of the high-v behavior of theq→0 limit of the
AKA parametrization for the spin channel.17 In particular,
Eq. (26) of AKA yields a formally divergent result when
combined with the known limiting behavior41 S↑↓sq→`d
~q−3.

VI. SPIN-RESOLVED POTENTIAL ENERGY

The correlation part of the potential energyvcsrs,zd of Eq.
(18) can be divided into↑↑, ↓↓, and↑↓ contributions, such
thatvc=vc

↑↑+vc
↓↓+vc

↑↓. These spin-resolved components ofvc
are important ingredients for the study and construction of
dynamical exchange-correlation potentials in the spin

channel.16,17They can be written as the expectation value of
the Coulomb potential 1 /r on the spin-resolvedgss8

c

vc
ss8srs,zd =

s2 − dss8d
Î2rs

nsns8

n2 E
0

`

gss8
c sx,rs,zddx. s73d

We have evaluated the RHS of Eq.(73) by numerical inte-
gration of our QMC data forgss8

c sx,rs,zd at z=0,0.48,0.8
FIG. 3. Spin-summed pair-distribution function(exchange plus

correlation:g=gx+gc, see text) for four different values of the spin-
polarization parameterz, and forrs=1, 2, 5, 10, 20, and 40(larger
rs values have stronger oscillations). The dots correspond to our
QMC data, the solid lines to our analytic representation. Error bars
are comparable with the dot size.

FIG. 4. Spin-summed pair-correlation functionsgc from our
analytic representation. Upper panel: forz=0, we showgc for rs

=2,3,4,5,7,10,15,20,30,40; stronger oscillations correspond to
higherrs values. The solid lines correspond tors=2,5,10,20,40, for
which ourgc accurately fits the QMC data; the dashed lines are the
results for intermediate values ofrs. Lower panel: forrs=2, we
show gc for different values of the spin-polarizationz
=0,0.3,0.48,0.7,0.8,0.9,1; more negative “on-top” valuesgcsx
=0d correspond to lower values ofz. The solid lines correspond to
z=0,0.48,0.8,1, for which ourgc accurately fits the QMC data.
The dashed lines correspond to intermediate values ofz.

FIG. 5. ↑↓ pair-distribution function(exchange plus correlation,
see text) for z=0 andrs=1,1.5,2,3,5,7,10(the largerrs values have
stronger oscillations). The dots correspond to our QMC data for
rs=1,2,5,10; the solid lines is our analytic representation at the
samers values. Dashed lines correspond to our analytic representa-
tion for the other values ofrs.
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and rs=1,2,5,10,20,40.This means that the integration in
the RHS of Eq.(73) has been truncated atL /2, whereL is
the side of the simulation cell(in our caseL /2,6). The

resultingvc
ss8 are thus affected by the finite-size error, since

they correspond to systems with fixed number of particles
(see Sec. III) and an infinite-size extrapolation is not avail-
able in this case. One can get an idea of the magnitude of
such error by using the same numerical-integration proce-
dure for the spin-summedgc, and then comparing the results
with the corresponding thermodynamic limit, the last term of
Eq. (18), combined with our5 ecsrs,zd. The relative error be-
tween the two evaluations ofvc is reported in Fig. 8: it is of
the order of few percents. Atz=1, Fig. 8 disproves Eq.(10)
of Ref. 8, which predicts a qualitatively different behavior
for the fully polarized system.

We have parametrized our spin-resolvedvc
ss8srs,zd as42

vc
ss8srs,zd = Fss8srs,zdvcsrs,zd. s74d

The fractionsFsssrs,zd for parallel spins are well repre-
sented by

F↑↑srs,zd = F↑↑
HDszd + fw1szdrs + w2szdrs

2glnS1 +
w3szd

rs
2 D ,

s75d

where the high-densityF↑↑
HD is given by Seidl,43

F↑↑
HDszd =

− 19.54s1 + zd
153.38Fszd − 192.46

, s76d

Fszd =
s1 + zdlns1 + zd + s1 − zdlns1 − zd

2 lns2d
+ 0.0636z2

− 0.1024z4 + 0.0389z6, s77d

and the functionswiszd have been obtained by fitting our data
for vc

↑↑srs,zd for z=−0.8,−0.48,0,0.48,0.8(the negativez
values corresponding to the↓↓ data)

w1szd = s1 − zds− 0.006 − 0.03zd, s78d

w2szd = s1 − zds− 0.01 + 0.03zd, s79d

FIG. 7. Upper panel: spin-summed correlation static structure
factors from our analytic representation ofgc and from the Atwal,
Khalil, and Ashcroft(Ref. 38) (AKA ) dynamical local-field factor.
Lower panel: the same comparison is done for the spin channel
(correlation only,↑↑−↑↓). All curves are forz=0.

FIG. 8. Relative errorDvcsrs,zd /vcsrs,zd=svc−vc
INTd /vc be-

tweenvc calculated using the RHS of Eq.(18) (with ec from Ref.
5), andvc

INT, obtained by numerical integration ofgc (see text).

FIG. 6. Upper panel: total(spin-summed) structure factor as
directly obtained from our QMC simulations(data with error bars)
and as a Fourier transform of our analytic representation ofgc (solid
lines), for rs=1,2,5,10,20,40. Higher peaks correspond to larger
rs. Lower panel, same comparison for the↑↓ static structure factor:
the data with error bars are QMC simulations and the solid lines are
Fourier transforms of our analyticg↑↓

c . Here thers values are 1,2,5,
and 10 and the larger deviations from the noninteracting valueS↑↓
=0 correspond to largerrs values.
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w3szd = 3.6s1 + zd4. s80d

Equations(75)–(80) completely determine the spin resolu-
tion of vcsrs,zd, since F↓↓srs,zd=F↑↑srs,−zd and F↑↓=1
−F↑↑−F↓↓.

In Fig. 9 we show our numerical results for the
antiparallel-spin fractionF↑↓srs,zd, together with our fitting
function; the relative errors on the fit ofvc

↑↓ (not shown) are
of the same order of magnitude of those of Fig. 8. We see
that the correlation part of the potential energy is completely
dominated by the↑↓ contribution, even forz as high as 0.8.
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APPENDIX A: LONG-RANGE SCALING

In this appendix we describe the construction of the long-
range part of ourgc. We follow the same procedure used for
the 3D case in Ref. 32, where the interested reader can find
more details and comments on the relevant physics. Here we
briefly recall the main equations and emphasize the differ-
ences between the 3D and 2D cases. As for the 3D case,14 the
results of this appendix can be used in the construction of a
generalized-gradient approximation for a 2D correlation en-
ergy functional. An important difference with Ref. 32 is that
here we focus ongc at the physical full coupling strenght, not
on his coupling-constant average. These two quantities are
related by a simple relation[see Eq.(25) of Ref. 21].

Following Ref. 32, we seek a scaling law for the long-
range part ofgc. We call “long-range” part the oscillation-
averaged asymptotic behavior ofgc for large x=kFr, or
equivalently, the behavior ofSc for small q=k/kF. The sim-
plest way to study this regime is to letrs approach zero(so
that kF→`). From Eq.(15), we see that the seeked scaling
law has the form

Scsq → 0,rs,zd → Î2rsf
3fsz,zd, sA1d

where

z=
k

kTFf2 =
q

f2Î2rs

sA2d

is a variable on the scale of the Thomas-Fermi wave vector
kTF (which does not depend onrs in the 2D case), and the
function fsz,zd has the small-z expansion(independent ofz)

fsz→ 0,zd = −
2

p
z+

1
Î2

z3/2 + Osz2d. sA3d

The random-phase approximation(RPA) exactly recovers
Eqs.(A1)–(A3). As in the 3D case,32 we can thus obtain the
function fsz,zd from RPA. Its (wrong) short-range behavior
will be quenched in our parametrization ofgc by the cutoff
function Fcutsxd of Eq. (24).

We thus evaluated numerically44 the function fsz,zd via
the standard RPA equation

SRPA
c sq,rs,zd = −E

0

`

dv
sb↑ + b↓d2

qkF/p − sb↑ + b↓d
, sA4d

with

bsq,vd = −
2

pq
Fq

2
− ReSÎSq

2
+ i

v

q
D2

− 1DG , sA5d

and

b↑ = bS q
Î1 + z

,
v

1 + z
D, b↓ = bS q

Î1 − z
,

v

1 − z
D .

sA6d

The resultingfsz,zd has the small-z expansion of Eq.(A3),
and for largez is equal to

fsz→ `,zd = Aszd +
Bszd

z
+ ¯ . sA7d

Equation (A7) corresponds, in real space, to a divergent
short-range behavior. As in three dimensions,32 with a suit-
able cutoff Eq.(A7) recovers the RPA high-density expan-
sion of the correlation energyec

RPAsrs→0,zd=aRPAszd
+bRPAszdrs ln rs+Osrsd. However, unlike the 3D case, in two
dimensions the RPA correlation energy is not exact even in
the rs→0 limit.41 Thus, while in three dimensions21,22,32the
large-z behavior offsz,zd was important to recover the exact
high-density limit ofec, there is no need in 2D to keep Eq.
(A7) in our parametrization. Moreover, as in three
dimensions,32 we find that thez dependence offsz,zd is very
weak(see Fig. 10), so that we can replacefsz,zd with fsz,0d
[this is exact in the “important” part off, i.e., the small-z
regime of Eq.(A3)]. We thus define the functionhszd

hszd = fsz,0d − As0d −
Bs0d

Îz2 + fBs0d/As0dg2
, sA8d

where As0d=−0.272076 andBs0d=10/p−3 correspond to
the large-z expansion forz=0 of Eq.(A7). As shown in Fig.
10, the functionhszd has the same small-z behavior offsz,zd,
but goes to zero whenz→`, which corresponds to a less
diverging short-range part in real space. The Fourier trans-

FIG. 9. Fraction of↑↓ contribution to the correlation part of the
potential energyF↑↓=vc

↑↓ /vc.
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form of hszd defines the functionf1svd of Eq. (25),

f1svd
v

=E
0

`

hszdzJ0svzddz, sA9d

wherev=Î2rsf
2x is the appropriate real-space scaled vari-

able. The functionf1svd has been evaluated numerically, and
then parametrized as

f1svd =
b1v

1/2 + b2v + b3v
3/2 + b4v

2 + b5v
5/2 + b6v

3

sv2 + b0
2d5/2

sA10d

with

b6 = 2/p, sA11d

b5 = −
9

4p

1
Î2
FGS3

4
DG2

, sA12d

b4 = − 3b0F b1

2b0
5/2BS3

4
,
7

4
D +

b2

3b0
2 +

b3

2b0
3/2BS5

4
,
5

4
D

+
b5

2b0
1/2BS3

4
,
7

4
D +

2

3
b6G , sA13d

b3 = − 22, b2 = 61, b1 = − 64, b0 = 3.46. sA14d

Equations(A11)–(A13) guarantee that the Fourier transform
of f1svd /v satisfies Eq.(A3). Gsxd and Bsx,yd are the stan-
dard gamma and beta functions45 Gs3/4d<1.225416702,
Bs3/4,7/4d<0.8472130848,Bs5/4,5/4d<0.6180248924.

APPENDIX B: SPIN-RESOLUTION OF THE
LONG-RANGE PART „z=0…

The long-range part ofgss8
c sx,rs,z=0d has been simply

approximated with Eq.(58), where the functionf̃1sv ,ad is

obtained fromf1svd of Eq. (A10) by replacingb6 with b̃6

=2s1/p+ad, and consequently changingb4 according to Eq.
(A13). In this way, the correspondingSss8

c sq,rs,z=0d ex-
actly recovers Eq.(56).
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