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Abstract. We present a simple and accurate model for the electron static structure
factors (and corresponding pair-correlation functions) for the 3D unpolarized homoge-
neous electron gas. This model stems from a combination of analytic constraints and
fitting procedures to quantum Monte Carlo data. We also identify the correct long-
range behavior of the pair-correlation function and of its spin-resolved components.
Finally, we use our fitting strategy for extracting other quantities from QMC simula-
tions, namely the spin-resolved contributions to the correlation energy and the static
local fields (the latter ones according to the Singwi, Tosi, Land, and Sjolander scheme)
which are given in this work as analytic functions of both the momentum transfer and
the electronic density.

INTRODUCTION

Binding and structural energies of many real molecules and materials are well
described by the Density Functional Theory (DFT) [1], which turns an interacting
many-electron system into a non-interacting system subject to an external self-
consistent field, and yields extremely accurate predictions for equilibrium geome-
tries, vibrational frequencies and other relevant physical and chemical properties of
both existing and yet-to-be-synthesized compounds. This includes, after the advent
of the Car-Parrinello method, real-time atomic trajectories, and thus phase transi-
tions, the liquid state and chemical reactions [2]. DFT needs, however, approximate
density functional for the so-called exchange-correlation energy. The major part
of such approximate functionals are built up starting from the results obtained for
a model system, the homogeneous electron gas. The homogeneous electron gas
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is a solid whose positive ionic charges are smeared throughout the whole crystal
volume to yield a shapeless, uniform positive background (whence the nickname
of jellium). The model, by ignoring the ionic lattice which makes real materials
different from one another, allows the theorists to concentrate on key aspects of the
electron-electron interaction. It thus provides a mine of information for solid-state
and many-body theorists [3], In spite of its simplicity, the jellium model is not an-
alytically solvable, and the most reliable results for the quantities of direct interest
for DFT calculations are obtained by quantum Monte Carlo (QMC) simulations
[4-9], which provide results in the form of a discrete data set. To build up approx-
imate exchange-correlation potentials that are local functionals of the electronic
density, one just needs to know the ground-state energy of jellium as a function of
the electronic density (and of the spin polarization for spin-polarized systems). To
this purpose, QMC data for the correlation energy of jellium have been fitted using
suitable functional forms which fulfill most of the known exact limits [10-13]. If one
wishes to go beyond this local density approximation (LDA), the electronic pair-
correlation functions of jellium are generally needed [14-18]. The pair-correlation
functions describe spatial correlations between electrons of a prescribed spin orien-
tation. The knowledge of these functions has its own interest, since they provide
a quantitative and intuitive description of the two-body properties of the system.
Moreover, as said, to build up semilocal and nonlocal exchange-correlation energy
density functionals, the pair-correlation functions of the jellium model must gener-
ally be known as a function of both the interelectronic distance and the electronic
density (and of the spin polarization for spin-polarized systems). As a consequence
several authors, over the last 20 years, have proposed ingenious expressions for this
or related functions [17,19-27].

There are motivations for resuming and improving over these efforts. A first
motivation is the avalaibility, from very recent quantum Monte Carlo (QMC) sim-
ulations [9], of a wealth of new numerical results for the pair-correlation functions
and their Fourier transforms (the static structure factors) of jellium1. None of the
previous models provides an accurate interpolation of these new QMC data, es-
pecially at the densities of practical interest for DFT calculations. Since at these
densities QMC should provide the best estimate for these functions, it is important
to make QMC data available for DFT calculations. This amounts to providing
analytic functions of both the inter-electronic distance and the electronic density
which fulfill all the exact limits and have enough free parameters to accurately fit
the QMC data, in analogy to what has been done in the past for the correlation
energy. A second motivation comes from the observation that most of the previous
models were not spin resolved (i.e. parallel- and antiparallel-spin cases were not
treated separately), none fulfilled all the known exact properties, and none was
given in analytic, closed form in both real and reciprocal space. As we shall see,
the last feature is crucial in order to include in the functional form all the exact

*) The pair-correlation functions and static structure factors are independently extracted by
QMC simulations, see Ref. [6].
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constraints in a very straightforward way.
This paper is organized as follows. A first section is devoted to define the spin-

resolved pair-correlation functions and static structure factors. We then analyze
the exact limits of these functions for small and large arguments, and discuss the
high-density limit of the corresponding correlation energy. Then, we describe a
new, simple strategy to provide analytic pair-correlation functions and static struc-
ture factors which accurately interpolate the QMC data, fulfill most of the exact
limits, and are closed-form in both real and reciprocal space. Finally, we show that
this strategy, as a byproduct, allows to extract quantities from QMC simulations
that are in general not available, namely the spin-resolved contributions to the cor-
relation energy and the static local field factors in the STLS [28] scheme, which are
given in this work as analytic functions of both the momentum transfer and the
electronic density. Hartree atomic units are used throughout this work.

DEFINITIONS

For an electronic system the pair-correlation function gaia2(rii r2)5 if ?v(r) is the
density of electrons with spin a =f or J,, is defined by

na1(ri)n<T2(r2)p<T1cT2(ri,r2) = {^^^(ri)^^)^^)^!^!)!*) (1)

and is thus related to the probability of finding two electrons of prescribed spin
orientations at positions 1*1 and r2. The normalization of g is such that the expected
number of electrons of spin #2 in the volume dV at T^ when another electron of
spin a\ is known to be at FI is given by

dW(r2a2|ri<7i) = na2(r2) gffl<,2(ri, r2) dV] (2)

the lack of any correlation amounts, then, to the condition g<rl<72(ri,r2) = 1. In
the spin-unpolarized jellium the electronic spin density n^(r) = n^r) = n/2 =
(STrrf/S)"1 is uniform in space2(i.e. independent of r), so gai(72(FI,r2) only depends
on the distance between the two electrons r = |ri — r2|.

The static structure factor S(q) is an "experimental" quantity, well-known to
whoever is familiar with scattering theory. It is directly related to the Fourier
transform of the pair-correlation function, and provides information on g(r). A
good pair-correlation function model should always correspond to a good static
structure factor and vice versa. For an unpolarized homogeneous electron gas, after
introducing the Fermi wavevector qF = (37T2n)1//3 = a/rs, with a = (97T/4)1/3, the
scaled variables p = qpr and k = q/qp are often convenient. With these variables
the static structure factors are written as

2) In what follows we won't be concerned with spatially nommiform phases of jellium (although
these phases are also of great interest: see e.g. J. A. Tuszynski, J. M. Dixon, and N. H. March,
Phys. Rev. E 58, 318 (1998), or Refs. [9] and [29]).
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(4)

and the total pair-correlation function and static structure factor are given by
g = (g^+gn)/2 and S = S^ + <%. The functions gaicr2 and Sffl(T2 are usually split
into exchange and correlation according to:

STt (P; r*) = fc (p) + gc
n (p; rs) (6)

Sn(k]rs) = Sc
n(k]Ts) (7)

5TT(fc;rs) = 5ecc(fc) + 5T
c
T(A;;rs) (8)

where the exchange functions, given by the Hartree-Fock approximation, are equal
to:

2 (9)

The electron-electron potential energy is, as known, given by the sum of repulsive
two-body Coulomb terms:

Its ground-state expectation value (per electron) , in a homogeneous electron gas of
density rs, is given by the following integral over the pair-correlation function:

(U}r, = ̂ r jf [ff(p; r.) - 1] Pdp. (12)

By the virial theorem [30] and the usual definition of the correlation energy ec as
total electronic energy minus Hartree-Fock energy, one obtains the known relation
between gc(p] ra) and ec:

^;0-i]- (is)
The same relation can be obtained in a more general way [14] by the Hellmann-
Feynman theorem and the coupling-constant average of gc(p] rs), which, for the
homogeneous system is just the average over rs:

c(p;r's)dr's. (14)

The function lf(p\ rs) is directly related to the correlation hole [14,25] of the elec-
tron gas.

24

Downloaded 10 Mar 2003 to 150.135.175.193. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



EXACT LIMITS

The quantum Monte Carlo data for gaia2(p) and Sffl(T2(k) are available for a
discrete set of inter-electronic distances p E [pmm5pmax]5 momentum transfers k €
[fcmin5&max]5 and densities ra. In order to provide a reliable extrapolation of the
QMC data outside the finite range [pmin, pmaj (or [^mm? fcmax])5 it is crucial to impose
to the fitting functional forms the exact behavior for small and large arguments.
In this section we report these exact limits. Some of them are well known, while
others were not emphasized before our work. They should be included in any model
for the correlation holes of jellium.

Pair-correlation functions near r = 0

The behavior of gffl<72(r] ra) in the r —> 0 limit is well known and can be directly
obtained from the many-body Schrodinger equation when two electrons approach
each other (cusp conditions) [19,31,32]:

r\

' " N ' " (15)

d_

Q3

= <7 T T ( r ->0 ; r . )=0 (16)
r^O

3 d2

Eqs. (15)-(17) hold for any SD-system of N fermions interacting via the two-body
repulsive Coulomb potential.

Structure factors near q = 0

The conservation of particles in the system implies the relations:

Sn(Q -> 0; ra) = Sn(q -> 0; rs) = 0. (18)

The asymmetry between the definitions (3) and (4) leads to the two well-known
sum rules for g^ and g^ (see for instance Ref. [19]). The long- wavelength behavior
of the total static structure factor S = S^ + S^ is well known and is determined by
the plasmon contribution, proportional to g2, and by the single-pair and multi-pair
quasiparticle-quasihole excitation contributions, proportional to q5 and g4 respec-
tively [33,34]:

S(q -> 0;rs) = %(g -, 0;rs) + Sn(q -+ 0;rs) = —^—— + C q* + O(g5), (19)
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where u}p(rs) = A/3/r3, is the classical plasma frequency. The small-g behavior of
the spin-resolved static structure factors seems, instead, less known. It can be
deduced by considering the magnetic structure factor, a quantity related to the
spin response function to an external magnetic field and defined as

S = STT - Su. (20)

In the random-phase approximation (RPA) (see e.g. Ref. [33]) the small-g limit of
S is obtained by the following simple argument [13,35]. RPA only takes into ac-
count the first-order exchange process (i.e. the Hartree-Fock term) and the highest-
order direct processes. Since direct processes occur between both parallel- and
antiparallel-spin pairs, in the unpolarized gas they are equally split between || and
| j. Thus, at any g, the difference S^ — S^ is, within RPA, equal to the first-order
exchange term, i.e. Eq. (10). Hence we have:

. (21)

In the small- k limit (which, since k = q/qp, can be achieved either by q — > 0 or
by rs ~* 0)5 RPA is known to give exact results for the total Tt + Ti correlation
[33,36-38]. However, as far as magnetic correlations are considered, RPA is the
same as the Hartree-Fock approximation, and the limit of Eq. (21) could be violated
in the exact case [39]. A recent study shows [40] that the appropriate corrections to
RPA do not change the linear behavior S(k — » 0) oc &; they just slightly modify the
coefficient of the linear term w.r.t the RPA value of 3/4 (and also the coefficient
of the cubic term w.r.t the RPA value of —1/16) in the above Eq. (21). In the
following equations we will, for the sake of completeness, indicate these corrections
as GI and c3, but in our fitting procedure we set them equal to zero, since, at least in
the parameter range of our interest, the RPA limit appears to adequately describe
the physics of the spin resolution at small k [13,41]. In the paramagnetic gas, the
parallel- and antiparallel-spin contribution to the plasma mode is the same, so the
oc q2 term in Eq. (19) is equally split between tt and Ti- Putting together Eq. (19)
and (21) we thus obtain the small-fc expansion of the spin-resolved static structure
factors,

(22)

(23)

Notice that the RPA fulfills Eq. (19) within O(fc4), since no term oc fe3 appears in
the total 5RPA.
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Pair-correlation functions for r —> oc

The long-range behavior of the pair-correlation functions can be obtained from
the small-fc behavior of the static structure factors, by means of simple properties of
the spherical Fourier transforms. To be more precise, the r —» oc behavior of g<jia2
is determined by the odd powers in the small-fc expansion of Sai(72. Following the
procedure already used in Refs. [19,31], we thus obtain for the total pair-correlation
function

g(p —* oo) — 1 oc —. (24)

The p~8 behavior is determined by the fc5 term in the small-k expansion of the
total 5. Notice that the widely-used Perdew-Wang model [25,41] does not fulfill this
exact limit. Their real-space correlation hole decays as p~5, and thus corresponds to
a wrong small-A: behavior of S(k) proportional to k2 In k. Using again the properties
of the spherical Fourier transforms, from Eqs. (22) and (23) one can easily write
down the long-range decay of the spin-resolved pair-correlation functions:

mUo = l + ̂ f7 + 3c1Ui^ + 36c3U0(-U (25)

= 1-7(l + 3ci)-^(5 + 36c3)+0(?)- (26)

Static structure factors for k —> oo

The large-fc behavior of Sai(72 has been determined in Refs. [19,31], by means of
Eqs. (15), (16) and (17). It is equal to

+oo)oc l (27)

)-locl . (28)

High-density limit of the corresponding correlation energies

Starting from Eq. (13) we can define the spin-resolved contributions to the cor-
relation energy such that ec = c^ + e^:

dppgc
aia2(p-rf

s). (29)

Then, conditions on the high-density expansion of g^l(T2 can be written down using
the well-known limit ec(rs -> 0) = Alurs + B + O(rslurs) [12,37,42-46]:
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4 a2 0 = rs [2Aai(T2 \nra + (Afflff2+2Bffl02)]. (30)

The spin-resolved high-density coefficients, Aai(72 and Baia2, are recovered by ap-
plying the same argument which yielded Eq. (21). The logarithmic divergent term
in the rs —» 0 expansion of ec arises by a direct process, and is thus equally split
between ti and tT hi the unpolarized gas. The constant term B is the sum of
two contributions: a second-order exchange term, B@)c, which only concerns the tt
part, and a direct term, B^ which is, instead, equally split (in the unpolarized gas)
between tt and ti- Hence,

An = A^ = \A (31)

BU = Y (32)

(33)
Li

Both B$c and Bd have been evaluated exactly [44,45].

A NEW STRATEGY

We briefly recall our simple functional form [13] for the correlation part of the
spin-resolved functions gai(T2 and S<jl(T2, which automatically fulfills all the above
limits, has enough free parameters to allow for an accurate fit of the new QMC
data [9], and is analytic and closed-form in both real and reciprocal space.

Antiparallel spins

For the ti part, in reciprocal space, a simple function with the desired properties
is

6 o^fr ) A:8 + a*Hr } kw

n=i H [(a^)2 + k2]

This function has the correct small-fc and large-fc behavior, and corresponds in real
space to a similar form [13], since the first term in the r.h.s. is the spherical Fourier
transform of the second one. The parameters 6^, c^, a^ and cty will be determined
as functions of rs by means of the exact constraints and of a fitting procedure to
QMC data [13]. Few, very simple equations are enough to make Eq. (34) fulfill the
small- and large-k limits:

$ = -I (35)
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(36)

(37)

vn _ (t,n\3)n\i III _ 5i2n^ _ 2048 [1 j. Y-,.uv ' -;• i i (38)

One of the advantages of an analytic form both in real and reciprocal space is that
we always deal with local rather integral properties. The Eqs. (35) and (37), as
mentioned before and already done in Ref. [13], amount to choosing the simple RPA
small-fc limit for the spin-resolved static structure factors by setting c\ = c% = 0
in Eq. (22). In the high-density limit, the correlation-energy constraint of Eq. (30)
translates into the following conditions:

<#(r. -» 0) = l + fci

1/3 nr
*\^ + 0(r°s) (40)

y / s

an(rs -» 0) = const. + O(rs) = an + O(rs) (41)
where ki and A;2 depend on A^, B^ and a^:

l-Z&Z+l (42)
729 (an)2 21 1 9(au)27r,.

(43)

Unfortunately, when the exact high-density limit of the correlation energy is im-
posed to Eq. (34), the exact rs — > 0 limit of the pair-correlation function at zero-
interelectronic distance is not recovered. Evidently, the simple functional form of
Eq. (34) does not correctly describe the short-range behavior of the Coulomb hole
at very high densities. However, as long as our pair-correlation functions fulfill the
high-density expansion of the energy, this drawback (which only affects densities
rs ;$ 0.1) is not energetically important.

Parallel spins

For the correlation part of the ft static structure factor we basically use the same
functional form used for the antiparallel-spin case,

Only the large-fc part is different with respect to the tJ, case in order to reproduce
the exact behavior of Eq. (28) and fulfill the Pauli principle. All the exact conditions
are easily imposed as in the ti case (see Ref. [13] for more details).
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Fit to QMC data

After imposing all the exact constraints, we are left with 6 free parameters for
the ti part and another 6 for the | j. We now have to find out how these free
parameters depend on rs. For each available density in the range 0.8 < rs < 10
(i.e. rs = 0.8, 1, 2, 3, 4, 5, 8 and 10) we performed a best fit of the 6 free parameters
to the QMC data [9], separately provided for the ti and the tt parts, and for real-
and reciprocal-space pair-correlation functions and structure factors, respectively.
The rs dependence of the parameters turns out to be quite smooth, monotonic,
and well described by the following functional forms (which also take into account
the exact high-density limit of Eqs. (39)-(41) and guarantee the exact low-density
expansion of the resulting correlation energy [4,10-12,47] dir~l 4- d^r^f2}:

(45)
TT _ 8[l-p1(aTT)r.ln(l+Pa(aTt)/r.)]
6 ( s ) ~

(47)
1/3 /T^+'rv (48)

\&l<72 i ry<ri02r

<ia2(rs) = * t/2
 s n = 4, 5, 6 (49)

1 + TV

where fci(a^) is given by Eq. (42), and fc2(aTJ-), Pi(a^) and P2(a^) are equal to:
7 O1 D 1

" ~ ~ 2

- ~
We are now left with 9 constants for f| and 9 constants for tt, that we fix by
a two-dimensional best fit to the QMC data [9] in real and reciprocal space [13]
(9368+9368 data points). We thus obtain analytic expressions for g and S that
are very reliable and accurate in the whole density range rs G [0.8, 10] (see Figs. 1
and3ofRef. [13]).

EXTRACTING OTHER QUANTITIES FROM QMC
SIMULATIONS

The new strategy we have just described allows to extract from QMC simulations
quantities that are usually not available, i.e. the spin-resolved contributions to the
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correlation energy and the static electric and magnetic local fields in the STLS [28]
scheme.

Spin-resolved correlation energies

The correlation energy obtained by integrating our g [see Eq. (13)] is reported
in Fig 1, together with the corresponding QMC data [9], Its tt and ti contribu-
tions (ec = e^ + eJT) are also separately shown. As expected [33], correlations are
dominated by ti interactions. Our total correlation energies are in agreement with
QMC data within 5% (the maximum absolute error is 3.4 mRy); this accuracy is
the same as the one reached by fitting other popular interpolation formulas [10-12]
to the new QMC data of Ortiz, Harris and Ballone [9] (see Ref. [13]). Notice
that our model pair-correlation function breaks down for rs > 10 [13], yet it gives
very good correlation energies even at higher rs values. This is due to the opti-
mal choice of the rs dependence of our free parameters, which also includes the
low-density expansion of ec. The spin-resolved contributions to the correlation

>

» 0.1
t

10

FIGURE 1. Total (solid) and spin-resolved (dashed) correlation energy obtained by the
pair-correlation functions of Ref. [13]. QMC data [9] are also shown as dots.

energy, shown in Fig. 1, should be reliable in the density range rs < 10, since
they are obtained by integrating the corresponding QMC pair-correlation func-
tions. This is the only way to extract the ti and tt contributions to ec from
QMC data. For rs > 10 we cannot expect our spin-resolved contributions to be
as reliable as for rs < 10, since at these very low densities they do not corre-
spond to good pair-correlation functions. In Fig. 2 we compare our parallel-spin
part of the correlation energy with three corresponding scaling guesses: Perdew-
Wang in both its original version [25] [4T(rs,C = 0) = ec(rs,C = 1)/21/3, where
£ = |nj — ni|/n], and its revised version [41] obtained by imposing to the orig-
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inal form our Eq. (21) [eJT(r,,C = 0) = ec(rs,C = l)/25/6], and Stoll et al. [48]
[eJT(r*,C = 0) = ec(21/3r5?C = 1)]- Both the original PW [25] and the Stoll et
al. [48] approximations overestimate the j j contribution to the correlation energy.
As rs increases, the PW and Stoll et al. approximations tend to the same limit,
which is rather different from our result. In comparison, the revised PW [41] model
does much better, even if it underestimates by ~ 22% the |t correlation energy
at rs = 0, and overestimates it by an amount which increases with rs (e.g. 3% at
rs = 3, 21% at rs = 10).

CD

0.1

Stoil et al.

'W

rev. PW

GSB

0.1 10

FIGURE 2. Our parallel-spin contribution to the total correlation energy [13] (GSB) compared
to the Perdew-Wang [25] (PW), the revised Perdew-Wang [41] (rev. PW), and the Stoll et al. [48]
approximations. ec(rs^ = 1) is from Ref. [12].

Static local fields in the STLS scheme

Local fields are introduced to take into account corrections to the random-phase
approximation. The electric and magnetic response functions are, in fact, usually
written as

(53)

(54)= -g

14
,2 ,,2

where XQ 'ls the Lindhard response function for the noninteracting gas, vq = 4?r/g2,
G and G are respectively the electric and the magnetic local fields, g is the electron
gyromagnetic factor and ^B is the Bohr magneton. The RPA amounts to G =
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(5 = 0, while the Hartree-Fock approximation to G = 1 and G = 0. In the static
approximation G and G only depend on q. In the scheme of Singwi et al [28] (STLS)
G(q) and G(q) are respectively given as functions of the total and the magnetic
structure factors. Of course, the strength of the STLS theory comes mainly from
its self-consistency requirement through the fluctuation dissipation theorem, and
its application out of context is not justified. However, it is useful to have G(q)
and G(q) which are compatible with simulations according to different recipes. In
Refs. [49] and [50] it has been shown that the STLS relation between G and S can
be usefully rewritten in terms of the first derivative of the pair-correlation function
g(p), as follows

^. (55)

where again we have used the scaled variables p = qpT and k — q/qp- As
in the case of the pair-correlation functions, we can divide the electric G(fc; rs)
into an exchange-only contribution Gex(k) and a Coulomb-correlation contribution
Gc(fc;rs), which, in turn, can be split into its parallel- and antiparallel-spin parts,

; rs), (56)

and then we have

9 ) . (57)

Within the STLS scheme, Gex, GJT and G^ can be obtained by inserting in Eq. (55)
the corresponding pair-correlation functions |gex(p), \g^(p\ rs] and \g^(p\ rs). The
so-obtained exchange-only result is well-known [28],

fi 1O J . fc + 2
k-2 ( 1.6 I i i

5 6 0 ~ 2 0 l l n

11 6
140 35 35

But now, by means of the accurate pair-correlation functions presented in the
previous sections, even the correlation contributions can be obtained in an analytic
form. When the Fourier transforms of Eqs. (34) and (44) are inserted into Eq. (55)
we obtain

o, (59)
+ aJTF8

TT(aTT, fc) + ̂ 5^(0", fc)

) (60)
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0.5

0.4

°'3

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3 3.5 4

q/q F

FIGURE 3. Antiparallel-spin part of Gc(k). Solid line: rs = 0.5; long-dashed: rs = 1;
short-dashed: rs = 3; dotted: rs = 5; dash-dotted: rs = 10.

where a™'(rs), c™'(rs), a™' and Ifff'(r8) are given in Eqs. (45)-(49) and in Ref. [13],
and

,(4215 a8 + 18620 a6

2560 (a2 + fc2)5

+31418 a4/c4 + 24220 a2fc6 + 7335 k8

7F (315 a8 +1540 a6fc2 + 2970 a4/c4 + 2772 a2/c6 + 1155 k8)

F6
TT(a,A;) =

STT
20480 a (a2+ fc2)5

-y (3003 a12 + 20790 a10/c2 + 100100 a6fc6

917504 a (a2 + /c2)'
+61425 a8fc4 + 15015 fc12 + 54054 a2fc10 + 96525 a4fc8)
—————-————f (2079 a12 + 3003 k12 + 14238 awk2

917504 a3 (a2+ fc2)7

+41405 a8fc4 + 65780 a6fc6 + 60489 a4fc8 + 30030 a2/c10)
-j (4725 a12 + 3465 /c12 + 31850 a10fc27T

,4(6,*) =

4587520 a5 (a2+ fc2)'
+90335 a8fc4 + 137148 a6k6 + 113091 a4fc8 + 27258 a2fc10)
e-bkEi(bk)(l + bk}-ebk Ei(-6fe) (1 - bk)

463 '

and Ei(t) is the standard exponential integral function. With respect to the expres-
sion of Bretonnet and Boulahbak [50] our Eqs. (59) and (60) have the advantage
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of being analytic functions not only of the momentum transfer k but also of the
electronic density rs, while their equation only holds for few rs values (namely
rs = 1,3,5 and 10). In Figs. 3 and 4 we report our analytic spin-resolved contri-
butions to the correlation part of G(k).

0.08
0.07
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0.05
0.04
0.03
0.02
0.01

0
0 0.5 1 1.5 2 2.5 3 3.5 4

q/qF
FIGURE 4. Parallel-spin part of Gc(k). Solid line: rs = 0.5; long-dashed: rs = 1; short-dashed:
rs = 3; dotted: rs = 5; dash-dotted: rs = 10.

CONCLUSIONS

We have recalled a recent closed-form expression for the pair-correlation functions
and the structure factors of the unpolarized homogeneous electron gas, discussed
some of its peculiar analytic properties and presented new analytic formulae for
the corresponding static local fields within the STLS scheme. Further work on the
small-fc limit of the structure factors is underway [40]; a Fortran code computing our
model functions is available upon request (Giovanni.Bachelet@romal.infn.it).
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