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Anomalous scaling and breakdown of conventional density functional theory methods
for the description of Mott phenomena and stretched bonds
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Density functional theory provides the most widespread framework for the realistic description of the electronic
structure of solids, but the description of strongly correlated systems has remained so far elusive. We consider a
particular limit of electrons and ions in which a one-band description becomes exact all the way from the weakly
correlated metallic regime to the strongly correlated Mott-Hubbard regime. We provide a necessary condition
a density functional should fulfill to describe Mott-Hubbard behavior in this one-band limit and show that it is
not satisfied by standard and widely used local, semilocal, and hybrid functionals. We illustrate the condition in
the case of few-atom systems and provide an analytic approximation to the exact exchange-correlation potential
based on a variational wave function which shows explicitly the correct behavior, combining in a neat way lattice
and continuum methods.
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I. INTRODUCTION

Density functional theory (DFT) plays a fundamental role
to understand matter around us [1]. In the last 30 years,
approximate functionals have increased in complexity and
accuracy. The local density approximation (LDA) proposed
in the original paper [2] by Kohn and Sham (KS) is already
rather accurate for many solids. With the advent of generalized
gradient approximations (GGA) [3,4] and hybrid functionals
[5], DFT became the workhorse in computational chemistry
also. More sophisticated semilocal functionals are the meta-
GGAs that using the KS kinetic energy density as input can
recognize different types of bonds [6,7], can provide accurate
potentials in asymptotic regions [8,9], and even can detect
excitonic effects in semiconductors [10]. However, current
DFT implementations fail to describe the correlation-induced
suppression of tunneling of electrons encountered in materials
with d or f open shells which, as first discussed by Mott
[11], may lead to insulating behavior and affect deeply the
thermodynamics and ground-state properties of correlated
metals close to the Mott phase [12] and so-called heavy
fermions [13,14].

Sometimes allowing for a spin-density-wave broken-
symmetry solution within spin DFT provides a good ground-
state description of magnetic insulators. While this is a popular
way out, even for molecules that have a singlet ground state,
it has several unwanted features, the more fundamental one
being that for the case of the H2 molecule it is known that
the exact Kohn-Sham solution does not show such broken
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symmetry at any distance [15,16]. Even if one neglects that,
practical problems appear. For example, spurious crossings
of solutions as the molecule is stretched [17] spoil molecular
dynamics computations. Furthermore, in the case of correlated
metals that do not have a broken-symmetry ground state as
heavy fermions [13] or slightly doped cuprates [18], artificially
broken-symmetry solutions would lead to the wrong volume
of the Fermi surface apparently violating Luttinger theorem
[19]. Thus, it is highly desirable to overcome the deficiencies
of current DFT methods without allowing for such broken-
symmetry solutions.

It is commonly believed that such problems “cannot be
remedied by using more complicated exchange-correlation
functionals in DFT” (see Ref. [20]). Instead, these effects have
been successfully described by means of lattice models, such as
the Hubbard model [21–23], employing a series of techniques
which have evolved into modern dynamical mean-field theory
(DMFT) [24]. This led to intense efforts to combine lattice and
DFT methods [20,25–29].

In this work, we derive a necessary condition a functional
should satisfy to be able to describe Mott-Hubbard behavior
in a band that can be described both by the continuum and a
one-band Hubbard model. We show that most functionals in
use today in chemistry and physics, including local, semilocal,
and hybrid functionals [30], do not satisfy the condition and
they cannot describe Mott-Hubbard phenomena. The problem
becomes evident by examining how functionals behave under
a rescaling of the length units. This provides a rigorous
ground to the quoted statement of Ref. [20] when restrained
to conventional approximations. Here, by “conventional” we
refer broadly to any functional whose exchange-correlation
(xc) potential converges to an exchangelike contribution in the
high-density limit.

We also obtain numerically the behavior of the xc poten-
tial in simple test cases that can be treated with accurate
wave-function methods. We show that a suitable analytical
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combination of DFT and lattice methods captures the correct
behavior with surprising good accuracy.

II. CONTINUUM MODEL AND ONE-BAND LIMIT

We first define a limit where the continuum model of
electrons in a periodic potential vext and a generalized one-band
Hubbard model are bound to provide quantitatively equivalent
solutions. We consider N electrons moving in the potential
vext produced by a collection of N identical nuclei of charge
Ze located on the sites R̃i of a periodic lattice with spacing ã.
The Hamiltonian in atomic units reads as

H̃ = −1
2

N∑

i

∇2
r̃i

−
N∑

ij

Z

|r̃i − R̃j |
+ 1

2

N∑

i ̸=j

1
|r̃i − r̃j |

, (1)

where r̃i are the electron coordinates. The system can be
viewed as a half-filled 1s band in which the atomic number Z
controls the orbital size aB/Z, with aB the Bohr radius.

In the following, quantities without tilde are expressed
in “scaled units” in which the orbital size is the unit of
length, i.e.,

a = Z
ã

aB

, (2)

and Z2 Ha is the unit of energy. In these units, the Hamiltonian
reads as

H =
N∑

i

ĥ(ri) + 1
2Z

N∑

i ̸=j

1
|ri − rj |

, (3)

where ĥ(r) is the one-body Hamiltonian, ĥ(r) = − 1
2∇2

r +
vext(r) with

vext(r) = −
N∑

j

1
|r − Rj |

.

Notice that, in rescaled units, the one-body part becomes Z
independent and 1/Z plays the role of a coupling constant
[31]. We will use a and Z as our control variables.

Our first goal is to define a region of the parameter space
(a,Z), where a one-band lattice model describes not only
qualitatively but also quantitatively the continuum model
defined by Eq. (3) (hereafter “the one-band limit”). As it is well
known from studies of the Hubbard model [21–24,32–35], the
most important energy scales in this problem are the Hubbard
onsite interaction U and the nearest-neighbor hopping matrix
element t , which define the weakly correlated regime 0 <
U ≪ zt , and the strongly correlated regime U ≫ zt , with z
denoting the lattice coordination.

For hydrogen (Z = 1), the elimination of higher-energy
bands is inaccurate since the energy cost [36] U = 0.47 Ha of
a charge fluctuation 1s11s1 → 1s01s2 is similar to the cost
! = 3

8 Ha of a charge fluctuation 1s11s1 → 1s12s1. This
can be seen already in the atomic limit comparing the above
“screened” Hubbard repulsion U (defined as the difference
between ionization and affinity energy of hydrogen) with the
“bare” Hubbard repulsion U0 = 5

8 Ha [obtained from Coulomb
integrals, Eq. (A3)]. This difference is due to the effect of
the higher orbitals which have to be taken into account in
the model in order to provide a quantitative description. To
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FIG. 1. Vanishing of screening effects at large atomic number
in the atomic limit. The 1s Hubbard U is shown vs the atomic
number. In red, we show the bare value U0 from Coulomb integrals
[Eq. (A3)], while the blue dots are the “screened” value obtained
as U = EZ,Z

I − EZ,Z−1
I where EZ,n

I is the nth ionization energy
[36] for atomic number Z. (E1,0

I ≡ EA is the affinity energy for
hydrogen.) The horizontal line is the cost ! of a charge fluctuation
1s11s1 → 1s12s1.

avoid this problem, we take the limit of large Z so that
! ∼ Z0 ≫ U ∼ 1/Z. As can be seen from Fig. 1, as Z grows
the screened U asymptotically approaches the bare U0 showing
that corrections from higher orbitals (at energy separation at
least !) become irrelevant. In order to keep the system in the
correlated regime of the Hubbard model in addition, we adjust
a ∼ ln(Z) so that t/U ∼ e−a/(1/Z) is kept constant. In this
limit, the condition

! ≫ t,U (4)

is fulfilled allowing us to study quantitatively Mott-Hubbard
phenomena in the model equation (3) from the weakly to
the strongly correlated regime within a one-band description.
Notice that the order of limits is important. The atomic
limit of the one-band model is obtained by doing first
a/ ln(Z) → ∞ and then Z → ∞, the other way around yields
the noninteracting limit.

Our next goal is to determine how the xc potential scales
with Z in the strongly correlated one-band limit. While the
one-band simplification is rigorously valid in a many-body
description, we will show below that it is forbidden in exact
Kohn-Sham DFT.

A. Lattice model

In the one-band limit, the continuum model is equivalent
to a generalized Hubbard model which can be obtained
by the standard second-quantization procedure employing a
single-particle basis of 1s orbitals φi(r) centered at Ri (see
Appendix A and Refs. [21–23,37–39]). It will become clear
below that our arguments are sufficiently general that are valid
for such generalized Hubbard model. However, to fix ideas
it is useful to think in terms of the standard Hubbard model
[21–23] which can be obtained by absorbing the long-range
part of the Coulomb interaction in mean field in the onsite
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energy v and restricting the hopping to nearest neighbors ⟨ij ⟩:

HH =
∑

iσ

v niσ − t
∑

⟨ij⟩σ
(c†iσ cjσ + H.c.) + U

∑

i

ni↑ni↓,

(5)
with ciσ (c†iσ ) the annihilation (creation) operator for an
electron with spin σ on site i and niσ ≡ c

†
iσ ciσ .

To link lattice and DFT descriptions, we need the corre-
lated density which is determined by the one-body density
matrix of the lattice model (ρij ≡

∑
σ ⟨c†jσ ciσ ⟩) and the φi’s

(Appendix A). The density can be separated into an “atomic”
component and a “bond-charge” contribution n(r) = nat(r) +
nbd(r) with

nat(r) =
∑

i

|φi(r)|2ρii , (6)

nbd(r) =
∑

⟨ij⟩
φ∗

j (r)φi(r)ρab + c.c., (7)

where we have used the fact that for large a (one-band limit)
the sums in Eq. (7) can be restricted to nearest neighbors and
we have defined the nearest-neighbor density matrix element
ρij = ρab. In our case, ρii = 1, thus, all the dependence of
the density on U/t is encoded in the bond charge and it is
controlled by ρab. For a large enough value of Z so that the
one-band approximation is accurate, we can study the system
from small to large U/t by either varying a or changing Z
at a fixed a. In the latter case, since the φj ’s can be taken as
fixed independently of the value of U/t , Eq. (7) establishes a
one-to-one mapping between the density and ρab as U/t (or
equivalently Z) is varied.

Notice that because of the orthogonality of the Wannier
wave functions nbd(r) integrates to zero and describes transfer
of charge between the core atomic region and the bonds.

III. BREAKDOWN OF CONVENTIONAL DFT METHODS

A. Hartree approximation

We now go back to the continuum model. Before examining
DFT, we analyze the ground state of Hamiltonian (3) in the
Hartree approximation. As an initial guess of the Hartree
orbitals, we can take the eigenstates of the noninteracting
problem. We will show below that the Hartree potential
vH (r) is at most of order O(1/Z), thus, since ! is O(Z0),
the corrections to the initial guess can be neglected and,
to leading order in 1/Z, the Hartree orbitals coincide with
the noninteracting orbitals and the Hartree self-consistent
density coincides with the noninteracting density. To show
this explicitly and fix ideas, let us consider the case N = 2,
although the arguments are easily generalized to any N . The
initial guess of the occupied Hartree orbital is the bonding state

ψH
0 (r) = 1√

2
[φa(r) + φb(r)].

Here, i = a,b labels the two ions and we assume real
orbitals. The Hartree density is given by nH (r) = 2|ψH

0 (r)|2
or, equivalently, by Eqs. (6) and (7), inserting ρij in the Hartree
approximation ρH

ij , where for two sites ρH
ab = 1.
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FIG. 2. Hopping reduction factor. (a) Exact results (full lines) as
a function of U/UBR for the Hubbard model in dimension D. Here,
UBR is a measure of the effective noninteracting bandwidth [40],
UBR ≡ 16

N

∑
k∈occ. ϵk where ϵk are the single-particle noninteracting

energies and the sum is restricted to the occupied states. We show
results for a two-site system (black), for an infinite chain (red), and for
the Bethe lattice in infinite dimensions (blue). The Bethe lattice data
were derived from numerical [41] and analytic [42] results (full blue
line). The cusp signals Uc2 where the Mott-Hubbard transition occurs
from the metallic phase (U < Uc2) to the insulating phase (U > Uc2).
The dashed line was obtained with the Gutzwiller wave function for
the same Bethe lattice. (b) Hopping reduction factor obtained with a
Gutzwiller-type wave function in a hydrogenic molecule as a function
of atom separation a for different atomic numbers. The dots (squares)
correspond to the cases considered in Figs. 5(a) and 5(b) [Figs. 5(c),
5(d), and 3].

The Hartree potential is given by

vH (r) = 1
Z

∫
d3r′ nH (r′)

|r − r′|
.

This is finite everywhere and it has a maximum that scales
at most as 1/Z. Thus, we can always choose Z large enough
so that vH/! ∼ 1/Z is small and the noninteracting orbitals
coincide with the Hartree orbitals. We anticipate that while the
same is valid in LDA, contrary to what can be expected on first
sight, this is not any more valid for the exact Kohn-Sham xc
potential.

B. How Mott-Hubbard correlations are encoded in the density

Since DFT provides an exact description [1], Mott-Hubbard
behavior should be encoded in the density. In the one-band
limit, this can only happen through the bond-charge equation
(7) which can be parametrized through the hopping reduction
factor defined as

q ≡ ρab

ρH
ab

. (8)

For an interacting system, one typically finds q < 1. For
example, Fig. 2(a) shows the hopping reduction factor of the
Hubbard model for exactly solvable lattices. In more general
cases, a good estimate of the hopping reduction factor can
be obtained with a variational Gutzwiller wave function (see
Appendix A 1). For the two-site Hubbard model, this yields
the exact solution, while for infinite dimension it provides an
accurate estimate in the metallic phase (dashed line in Fig. 2).

For the full model equation (A2), the qualitative behavior
of the hopping reduction factor does not change as it can be
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FIG. 3. Charge along the bond for interatomic distance a = 4.5
(aBZ−1) and various values of Z. The inset shows the interacting
charge minus the nointeracting charge (Z = ∞). Charges where
computed within full CI (see Appendix H).

easily checked using perturbation theory. Figure 2(b) shows
the hopping reduction factor computed with a variational
Gutzwiller-type wave function for the two-site full model
(Appendix A 1) as a function of the interatomic distance
a. Since t decreases exponentially with a, one obtains a
rapid crossover from the weakly correlated regime (q ∼ 1)
to the strongly correlated regime (q ∼ 0). (In the quantum
chemistry literature, the latter is often referred to as the
regime of “nondynamical” correlations.) It is believed that
the crossover turns into the Mott metal-insulator transition in
high-dimensional lattices as Fig. 2(a) suggests.

From the above discussion it is clear that in the one-band
limit, independently of the dimensionality, the correlated
charge in the bond is depleted with respect to a Hartree
computation [cf. Eqs. (7) and (8) and Fig. 2]. Figure 3 shows an
accurate computation of the density in scaled units and within
the full configuration interaction (CI) approach as explained
in Appendix H. For small Z (strong correlation), the bond
charge is indeed depressed, however, the differences are minute
which makes extremely challenging for DFT to be sensitive to
Mott-Hubbard correlations.

C. Density functional theory

In Kohn-Sham theory [2], the interacting system is mapped
into a system of noninteracting electrons moving in an effective
potential which is the sum of the external potential, the Hartree
(H) potential, and the xc potential:

vKS(r) = vext(r) + vH(r) + vxc(r). (9)

In the exact formulation, the noninteracting system reproduces
the exact density of the interacting system, however, in practice
vxc is an unknown functional of the density and approximations
are needed. In the local density approximation [2,30] (LDA),
the xc potential is a simple function of the local density
vLDA

xc (r) = vLDA
xc [n(r)]. We show now that LDA cannot account

for Mott-Hubbard correlations of the system.
To solve KS equations in LDA one can use again the Hartree

density nH as a starting guess. Using a standard parametrization
of the potential, it is easy to show that vLDA

Hxc is at most of
order ∼1/Z (see Appendix B). For large Z, the change in
the orbitals is then of order vLDA

Hxc /! ∼ 1/Z and it can be

neglected. Thus, in the one-band limit, LDA orbitals coincide
with the Hartree orbitals and the density is given by Eqs. (6)
and (7) with ρLDA

ij = ρH
ij independently of U/t . It is clear that

LDA cannot account for the bond-charge reduction which is a
primary characteristic of Mott-Hubbard correlations.

The failure of LDA can be traced back to the 1/Z scaling
of vxc. Clearly, the exact vxc cannot scale as 1/Z everywhere
since, if it did so, the same argument as for LDA would
apply. The only way to generate the correlated density with a
noninteracting system is by modifying the orbitals, and this can
only happen by allowing the low-energy 1s states to be mixed
with high-energy single-particle states outside the minimal
basis set, consistently with the known fact that exact KS-DFT
breaks down when restricted to a finite basis set [44,45].

For large Z, the mixing of the 1s band with the higher
bands can only be achieved if the xc potential is of order Z0. It
follows that a necessary condition that a functional must satisfy
to describe Mott-Hubbard behavior in the limit in which the
one-band mapping is accurate is that the potential should have
regions which scale as Z0. Any functional whose xc potential
scales to zero when Z → ∞ (keeping U/t constant) cannot
describe Mott-Hubbard behavior. As will be shown next, this
is the case for all conventional functionals which, according
to our definition, converge to an exchangelike contribution in
the high-density limit.

D. Scaling properties

It is useful to recast our findings in terms of scaling relations,
which are a basic tool for constructing approximate functionals
in DFT (for a recent review, see, e.g., Ref. [46]). The density
in atomic units reads as

ñ(r̃) = Z3

a3
B

n(r) = Z3

a3
B

n(Zr̃/aB ). (10)

If a were kept fixed, then the Z → ∞ limit would correspond
to the noninteracting case, which, in DFT, it is exactly
equivalent to a density in atomic units driven to the high-
density limit [Fig. 4(a)]. If instead ã were kept fixed then, in
scaled units, atoms run away from each other [Eq. (2)] and
atomic orbitals become asymptotically exact with [47]

t = 2
3
ae−a,

U = 5
8Z

, (11)

implying that

t/U ∼ Z2e−Zã/aB ã/aB ≪ 1,

which corresponds to the strong-coupling limit of the Hubbard
model [Fig. 4(b)]. Instead, here we change a with Z in such a
way that t/U is kept constant [Fig. 4(c)]. In scaled units atoms
run away from each other [although slower than the trivial
scaling of Eq. (2)], thus, Eqs. (11) are still valid. Therefore, the
condition of keeping t/U fixed can be obtained more precisely
by solving the following equation for a:

ae−a = 15
16Z

t

U
, (12)
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ñ
(a

B-3
)

(c)

FIG. 4. Schematic plot of different scalings of the charge density in atomic units as a function of the position in units of the Bohr radius.
The black dots indicate the position of the atoms. (a) The scaled distance is fixed at a = 6 (aBZ−1). As Z grows, the atoms approach each
other in atomic units and the Hubbard interaction decreases as U/t ∼ 1/Z. In scaled units, this panel will be qualitatively similar to Fig. 3. (b)
The distance in atomic units is fixed at ã = 6aB the scaled distance is shown in the legend. Here, U/t ∼ eZ due to the exponential suppression
of tunneling. (c) The scaled distance is fixed at a = 6(aBZ−1) for Z = 1 and then it is changed as a ∼ ln Z so that U/t ∼ 70 is kept constant
(see legend). As Z grows, the atoms approach each other in atomic units and the density increases in the bond region, but both more slowly
than in (a). Notice that in cases (a) and (c) the density in the bond is driven to the high-density limit where conventional functionals converge
to the noninteracting limit despite U/t ∼ 70 in case (b) corresponds to a highly stretched bond. Case (a) is the usual DFT scaling [46] to high
density [Eq. (10)] and case (b) is the extreme stretched case, while case (c) is the scaling considered in this work.

which yields a(Z) = −W−1(− 15t
16ZU

) with W the Lambert
function. At large Z, the leading terms in a(Z) are

a(Z → ∞) = ln(Z) + ln[ln(Z)] + . . . . (13)

In atomic units, the atoms get closer to each other as Z grows
[Fig. 4(c)]:

ã ∼ ln Z

Z
aB.

We can now obtain the scaling of the density in the one-band
constant U/t limit. It is easy to see that close to the atoms
(i.e., at a fixed scaled distance r from the nuclei) the density
in atomic units is given by the usual uniform scaling relation
[Eq. (10)].

Solving the two-site problem with atomic orbitals we obtain
that the correlated density at the mid-bond region in scaled
units [Eq. (A11)] goes to zero as

n(0) = (1 + q)
2
π

e−a ∼ 1
Z ln(Z)

. (14)

However, to analyze the DFT behavior we need the density in
atomic units which behaves as

ñ(0) ∼ Z3e−a(Z) = Z2

ln(Z)
, (15)

which is still high density for large Z as illustrated in Fig. 4(c),
but not in the usual uniform scaling way [Eq. (10)]. To the best
of our knowledge, this scaling has not been considered before.
Without the ln(Z) in the denominator, the scaling has been
considered in Sec. IV E of Ref. [46], where, however, it has
been analyzed only for low densities (which would correspond
to Z → 0 in our case).

Since, by definition, at high density conventional function-
als converge to an exchangelike contribution, it follows they
can not yield the parts of the potential scaling as Z0. The
dilemma of DFT is to keep these anomalous scaling parts
of the potential in the high-density limit where conventional

functionals converge to pure exchange. For details on specific
functionals, see Appendix B.

IV. MOTT BARRIERS

How does the exact xc potential look? It should have a
barrier in the bond to deplete the KS density, a well-known
result from the study of molecules [48–53]. We term the part
of the xc potential that scales as Z0 a “Mott barrier.” It can be
proved that the barrier height in the strongly correlated regime
is related to the ionization potential of the system [49–53];
it is therefore of order O(Z0) as expected from the previous
arguments.

To illustrate the Mott-barrier effect and develop an approx-
imation for the exact potential, we follow a long tradition
[11,54] and study a two-site system as a proxy for the lattice. As
in the pioneering works of Refs. [48–53] we compute the Hxc
potential vHxc ≡ vH + vxc, by inverting Kohn-Sham equations
with the full CI densities as an input (Appendix H).

In Figures 5(a) and 5(b), we show the potential along
the bond for Z = 5 and different interatomic distances. The
dots and solid lines in Fig. 5(a) are obtained, respectively, by
inverting CI densities and by approximate analytical formulas
which will be explained later while the lines in Fig. 5(b)
represent the LDA. We see that for large a (strong correlation),
a large barrier develops in the bond while this effect is missed
by the LDA. Notice that for the shortest distance a broad small
barrier appears in the numerical results which is approximately
reproduced in the LDA. This barrier is of a different physical
origin and will be discussed below. Analogous conclusions
can be drawn by looking at Figs. 5(c) and 5(d) where we plot
the potential at fixed interatomic distance a = 4.5 (aBZ−1) for
different values of Z. As shown by the squares in Fig. 2(b) by
changing Z at this distance, one goes from the case of weak
correlation (Z = 5, large q) to the case of strong correlation
(Z = 1, small q). Indeed, a large barrier develops in the CI
results for the last case which is not reproduced by the LDA
which instead works well at weak coupling.
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FIG. 5. Hartree-exchange-correlation potential for a two-site system. The potential is plotted along the bond direction x for z = y = 0 and
different values of a and Z. Panels (a) and (c) show the potential obtained inverting the full CI density (dots) and in the L+REP approximation
using orthogonalized atomic orbitals (lines). Open circles indicate the positions of the ions. Panels (b) and (d) show the LDA [43] results
corresponding to panels (a) and (c). The strength of the correlations for each case is defined by the value of q in Fig. 2(b).

Figure 6 shows that the arguments developed rigorously
for large Z still describe the behavior for Z = 1 changing
a. Notice, however, that the barrier becomes smaller as one
goes to larger a which may seem surprising according to
our previous arguments. We will see below that the barrier
has actually two components one with the Hartree-type
1/Z scaling and the other scaling, as expected from the
previous arguments, as Z0. It is the latter component which
becomes large in the strong-coupling regime and which
can not be captured by conventional functionals. Indeed, in
all weak-coupling cases LDA approximately reproduces the
barrier (apart from a constant shift which is only relevant in

determining the tails of the density far from the molecule). In
contrast, as correlations increase LDA starts to perform very
badly.

The solid lines in Figs. 5(a), 5(c), and 6(a) represent a
reverse-engineering potential (REP) obtained from an approx-
imate analytical inversion of KS equations combined with
the solution of the lattice problem (L+REP) constructed from
orthogonalized 1s atomic orbitals (Appendixes D and E). This
inversion, involving a Laplacian, is a singular problem so that
subtle errors in the density propagate to give large errors in the
potential and the task may seem hopeless with such a rough
basis. Since a large source of error comes from the basis, we
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FIG. 6. Hartree-exchange-correlation potential for the stretched hydrogen molecule. We show vHxc as a function of x for z = y = 0 for
different values of R. The dots in (a) were obtained inverting the full CI ground-state density as explained in Appendix H while the lines are
the L+REP results. Open circles indicate the position of the ions. Panel (b) shows the LDA results. The cases a = 1.4 and 3(aBZ−1) were
shifted by 0.5 and 0.25 (Z2 Ha), respectively, for clarity. The first two cases are in the weak and intermediate correlation regimes while the
case a = 6(aBZ−1) is in the strong-coupling regime [cf. Figs. 2(b) and 7(b)].
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FIG. 7. Height of the Hartree exchange-correlation potential at the bond midpoint for the two-site system as a function of internuclear
separation for different Z. In (a) full lines are obtained using the L+REP approximation subtracting a small spurious term at infinity [Eqs. (D21)
and (D22)]. Dots are obtained inverting the full CI charges. For Z = 1, we include also data obtained with an accurate variational wave function
(Appendix H). Diamonds are from Ref. [55]. (b) Shows separately the anomalously scaling Mott barrier height contribution, Eq. (D21), and
the contribution scaling as 1/(Za) (cond) from Eq. (D22). The dashed lines are the LDA results.

first derive equations to optimize it (Appendix C and Refs.
[38,39]). Fortunately, the solution of these equations is not
needed. Instead, one finds that they can be used to eliminate the
Laplacian, yielding equations which are much less sensitive
to the basis and can be evaluated with approximate orbitals
(Appendix F).

The resulting expressions for the Hartree-exchange-
correlation potential read as

vHxc(r) = vkin
c (r) + vresp

xc (r) + vcond
Hxc (r), (16)

with

vkin
c (r) = (1 − q2)

2
|φa(r)∇⃗φb(r) − φb(r)∇⃗φa(r)|2

n2(r)
, (17)

vresp
xc (r) = t(1 − q)[φa(r) − φb(r)]2

n(r)
+ δϵg, (18)

vcond
Hxc (r) = 1

Z

∫
n2(r,r′)

n(r)|r − r′|
dr′, (19)

where δϵg > 0 is a small positive constant and n2(r,r′) is the
two-body density [55]. The terms correspond one by one to the
partition of the xc potential obtained by Buijse et al. [55]. The
present expressions, however, in terms of the lattice hopping
reduction factor q are new.

As shown in Figs. 5 and 6, using L+REP Eqs. (17)–(19)
yield a very accurate xc potential from the weakly to the
strongly correlated regime. This holds even in the case Z = 1
where the influence of higher-energy orbitals could have
spoiled the agreement.

The first term in Eq. (16) is order Z0 while the last two
terms are at most of order 1/Z, thus, these equations show
explicitly that the vxc has parts with anomalous coupling
constant scaling. Specifically, the first term, which vanishes
in the weakly correlated limit (q = 1), yields the Mott barrier.
The nonconstant part of Eq. (18) is of order 1/Z because of
the t factor and our requirement of constant U/t .

In the one-band (large-Z) limit and for large a the
above equations become particularly simple for the barrier
height. Subtracting a small spurious constant term, there is
no contribution from v

resp
xc and the height separates in two

contributions, one of Mott-Hubbard type, scaling as Z0, and
one of Coulomb form with different Z scaling,

vkin
c (0) ≃ (1 − q)

2(1 + q)
, (20)

vcond
Hxc (0) ≃ 1

Za
. (21)

Figure 7(a) shows the barrier height as a function of a for
different Z. The dots are the numerical data, while the full lines
are obtained from Eqs. (D21) and (D22). Figure 7(b) shows the
barrier separated in the two components. LDA yields a quite
good account of the Z−1 component while the Z0 component
is completely missed. One can also see that the Z0 component
just reflects the q behavior as a function of distance shown in
Fig. 2.

For hydrogen [upper curve in Fig. 7(a)], an accidental com-
pensation of the distance dependence of the two components
explains why the crossover was not identified in the potential
before.

V. GENERALIZATION TO MANY ATOMS

To illustrate the relevance of these results for extended
systems, we introduce a simple generalization of the L+REP
equations (17)–(19) to the many-atom many-electron case.
Equation (19) can be used without modification. Equations
(17) and (18) are important only in the strong correlation
regime. In this case, since electrons are localized, we expect
that the wave function resembles the two-site wave function.
Thus, Eqs. (17) and (18) are generalized by replacing the
site labels a and b by site indexes i and j and summing
over all ⟨i,j ⟩ nearest-neighbor sites. q is obtained from the
solution of the lattice problem in the geometry considered (see
Appendix G).

Figure 8(a) shows the barriers for a four-site H chain
while Fig. 8(b) compares a quantum chemistry computation
of the charge with the KS charge corresponding to the L+REP
potential. The small difference between the two charges
indicates that the L+REP is accurate also in this case.
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FIG. 8. Mott barriers for a four-atom chain. Panel (a) shows vHxc along the path shown in the inset for four H atoms arranged in a square
with interatomic distance a = 6aB . Panel (b) compares the interacting charge computed with an accurate quantum chemistry method (CC) and
the charge from the solution of the Kohn-Sham potential obtained with the L+REP method. Both are displayed as the difference between the
interacting and the noninteracting charge (Z = ∞) along one side of the square with the origin at the bond midpoint.

VI. DISCUSSION AND CONCLUSION

We have studied a model which shows Mott-Hubbard
phenomena in a limit in which DFT and a lattice approach
are forced to agree quantitatively. In this one-band limit with
constant U/t , a dichotomy appears between two paradigmatic
descriptions of interacting electrons, namely, the one-band
Hubbard model and Kohn-Sham DFT. No matter how large
is Z, the exact Kohn-Sham orbitals cannot be expanded in
terms of the 1s band alone and, for a successful description
of Hubbard-type correlations within Kohn-Sham DFT, one is
obliged to consider other orbitals, in contrast to the one-band
Hubbard description where the density is computed without
information on the higher bands.

A basic aspect of Mott-Hubbard physics is the suppression
of the tunneling amplitude in the lattice model which is
equivalent to a suppression of bond charge in the continuum
model. The way in which exact Kohn-Sham DFT manages to
reproduce the correlated density is by the appearance of Mott
barriers in the bonds which mix the Kohn-Sham orbitals of the
band of interest with other bands.

Basically, we have shown that in the one-band limit keeping
U/t constant the exchange-correlation potential has parts
which remain finite despite the fact that the coupling constant
is formally driven to zero. Conventional functionals can not
cope with this situation and, therefore, they are generically
inadequate to describe Mott phenomena or stretched bonds.
This is the case of widely used functionals such as local,
semilocal, strictly correlated electrons and hybrids among
others.

Van Leeuwen and Baerends [56] had carefully analyzed
the behavior of a generalized gradient approximation (GGA)
exchange-correlation potential, namely, the so-called B88
exchange [3] with P86 correlation [57]. Their conclusion is
that for hydrogen molecule, these functionals yield a barrier
in the midpoint region that is divergent in the dissociation
limit instead of having a constant height, thus, the barrier
appears “too large.” As shown in Appendix B in the one-band
limit the barrier vanishes, thus, it is shown to be “too small.”
This appears paradoxical as both results correspond to the
limit of infinite atomic separation. However, in Ref. [56] the
Hubbard-type interaction strength as measured by U/t also
diverges while in our computation it is kept constant. In that

sense, those functionals yield barriers which are too small to
describe Mott-Hubbard behavior although they may mimic
real Mott barriers for specific values of coupling constant
and distance. This may explain why these functionals appear
to work on some materials and molecules but not in others.
Clearly, they lack the generality needed for being predictive in
all situations although they may improve over LDA in specific
situations.

The bond-charge problem studied here provides different
insight with respect to the fractional charge and fractional
spin analysis [58], which corresponds to the very stretched
limit. Here, we analyze explicitly a less extreme case, gaining
important information on the more challenging intermediate
correlation regime.

It is often assumed that Kohn-Sham DFT bands do not
show any narrowing due to interactions. Our results clearly
indicate that the exact Kohn-Sham DFT bands will show band
narrowing due to a suppression of tunneling stemming from
Mott barriers [cf. Figs. 5(a), 5(c), 6(b), and 8(a)]. However,
we have also shown that as soon as any conventional local
semilocal or hybrid functional is used, this effect is lost. Thus,
although the assumption is in principle incorrect, in most
practical computations available at present it is correct because
the Mott barrier effect is not included.

We find that the xc potential separates naturally into two
components, one with a conventional coupling constant scaling
(1/Z) and one with an anomalous coupling constant scaling
Z0. Standard functionals capture only the first component,
thus, those approaches in which Mott-Hubbard correlations
are incorporated at a second stage modifying the conventional
DFT band structure through DMFT or Gutzwiller approxima-
tions can be seen as a way to take into account the missing
component [20,26–29]. Our results establish a firm theoretical
basis to reformulate this approach in a rigorous way, avoiding
double-counting problems which plague the field. Indeed,
there is a clear division of the work that needs to be done
by each approach related to the scaling properties of the
potential.

Clearly, to obtain the anomalous coupling constant scaling
directly from a functional is a highly nontrivial task. The
present L+REP approach is a shortcut to this problem.
In particular, Eq. (17) establishes an intimate relationship
between the suppression of tunneling in the lattice model and
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in the Kohn-Sham description linking in a neat way the two
worlds of lattice models and DFT in the continuum.
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APPENDIX A: LATTICE MODEL AND GUTZWILLER
WAVE FUNCTION

The one-band model is obtained by expanding the field
operators ψσ (r) and ψ†

σ (r) in a minimal basis consisting of N
Wannier orbitals φi(r) ≡ ⟨r|i⟩ centered on the N sites of the
lattice

ψσ (r) =
∑

iσ

φi(r)ciσ + . . . ,

ψ†
σ (r) =

∑

iσ

φ∗
i (r)c†iσ + . . . , (A1)

where the ellipsis indicates neglected higher-energy states. For
the scaling arguments it is enough to define φi(r) as Wannier
orbitals obtained from the lower band of Bloch states that
diagonalize the noninteracting Hamiltonian (noninteracting
Wannier orbitals). In the one-band limit defined in the text,
they are very similar to orthogonalized atomic 1s orbitals.
More accurate Wannier orbitals are discussed below.

Using Eqs. (A1), the one-band generalized Hubbard Hamil-
tonian corresponding to the continuum model defined in Eq. (3)
can be cast as

H1B = Hh + Hw =
∑

ijσ

hij c
†
iσ cjσ

+ 1
2

∑

ijklσσ ′

wij,klc
†
kσ c

†
iσ ′cjσ ′clσ (A2)

with hij = ⟨i|ĥ|j ⟩ and

wij,kl =
∫

d3r d3r′φ∗
k (r)φ∗

i (r′)w(r,r′)φj (r′)φl(r), (A3)

with w(r,r′) denoting Coulomb interaction:

w(r,r′) = 1
Z|r − r′|

. (A4)

H1B is written in terms of bare matrix elements as, for
example, the onsite Coulomb interaction U0 ≡ wii,ii . The
effect of orbitals outside the basis is often accounted for [20]
by replacing the bare matrix elements by screened matrix

elements. However, in the one-band limit this effect can be
neglected (see Fig. 1) and we drop the nought (i.e., U0 = U ).

Equations (A1) can be also employed to relate the one- and
two-particle densities, respectively, n(r) and n2(r,r′) to the
one- and two-particle lattice density matrices as follows:

n(r) =
∑

σ

⟨ψ†
σ (r)ψσ (r)⟩ =

∑

ij

φ∗
j (r)φi(r)ρij (A5)

and

n2(r,r′) =
∑

σσ ′

⟨ψ†
σ ′(r′)ψ†

σ (r)ψσ (r)ψσ ′(r′)⟩

=
∑

ijkl

φ∗
i (r)φj (r)φ∗

k (r′)φl(r′)Dij,kl, (A6)

where we defined the spin-integrated two-body lattice den-
sity matrix Dij,kl =

∑
σσ ′ ⟨c†iσ c

†
kσ ′clσ ′cjσ ⟩. The density of the

Hartree state is recovered by inserting in Eq. (A5) the Hartree
lattice density matrix ρH

ij , i.e., for two sites ρH
ab = 1, while for

a chain of atoms,

ρH
ab = 2

N

∑

|ka|<π/2

cos ka = 2
π

. (A7)

Let us now focus on the two-site case. Labeling the two
sites as a,b and assuming real orbitals, the one-particle lattice
Hamiltonian is simply defined by v = haa = hbb and −t =
hab, while the Coulomb operator reads as [21,37]

Hw = U
∑

i=a,b

ni↑ni↓

+V nanb + tc
∑

σ

(naσ̄ + nbσ̄ )(c†aσ cbσ + H.c.)

+K
∑

σσ ′

c†aσ c
†
bσ ′caσ ′cbσ + K ′

∑

σ

c†aσ c
†
aσ̄ cbσ̄ cbσ ,

(A8)

where V = waa,bb denote the intersite repulsion, K = wab,ba

is the direct exchange interaction, K ′ = wab,ab can be thought
as a Coulomb repulsion among bond charges, alternatively it
can be seen as a pair-hopping term. For real orbitals, K = K ′.
Eventually, tc = waa,ab is a correlated hopping term and it can
be considered as the contribution of the Hartree potential to
the hopping.

The two-site lattice model can be solved exactly. The
ground-state energy is given by

EG = 1
2 (U + V + K + K ′ − !Gw),

where

!Gw =
√

(U − V − K + K ′)2 + 16(t − tc)2.

The ground state is

|)s,0⟩ = |*HL⟩ + γ |*ion⟩√
1 + γ 2

, (A9)
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where |*HL⟩ and |*ion⟩ are defined by

|*HL⟩ = 1√
2

(c†a↑c
†
b↓ + c

†
b↑c

†
a↓)|∅⟩,

|*ion⟩ = 1√
2

(c†a↑c
†
a↓ + c

†
b↑c

†
b↓)|∅⟩

and γ is given by

γ = !Gw − (U − V − K + K ′)
4(t − tc)

. (A10)

The correlated density Eq. (A5) reads as

n(r) = φ2
a(r) + φ2

b(r) + 2qφa(r)φb(r) (A11)

with the hopping reduction factor

q = 2γ

1 + γ 2
. (A12)

Figure 2(b) was obtained from Eqs. (A3), (A10), and (A12)
using orthogonalized atomic 1s orbitals (Appendix E).

1. Gutzwiller wave function

The correlation-induced changes in bond charges described
by q are rooted in the competition between tunneling energy
and Coulomb induced localization. For extended systems,
the Gutzwiller wave function is a simple tool to study such
competition.

For a lattice of identical atoms, the Gutzwiller wave
function can be written as [22,40,59]

|)γ ⟩ = γ D

C
1/2
γ

|)0⟩, (A13)

where |)0⟩ is a Slater determinant, D =
∑

i ni↑ni↓ counts
the total double occupancy, γ is a variational parameter,
and Cγ = ⟨)0|γ 2D|)0⟩ a normalization constant. For U > 0,
the operator γ D decreases the weight of configurations with
double occupied sites. The Gutzwiller variational problem can
be solved exactly in infinity and in one dimension [33,34].

In the two-site case, the Gutzwiller wave function coincides
with the exact expression given in Eq. (A9), and interpolates
between the Hartree-Fock (HF) and the Heitler-London (HL)
solutions recovered, respectively, for γ = 1 and 0.

Unlike the two-atom case, the Gutzwiller wave function
does not yield the exact solution of the infinite-dimensional
problem. However, comparing with the exact solution which
can be obtained numerically using dynamical mean-field
theory, one finds that it gives a remarkably accurate description
of the metallic phase [see Fig. 2(a)]. In the insulating phase
it yields q = 0, in contrast with the finite value of q of the
exact solution. Furthermore, the exact solution shows a Mott
transition at the kink position in the blue curve of Fig. 2(a),
while in the Gutzwiller approximation the transition occurs at
U = UBR with UBR denoting the Brinkman-Rice U [32].

APPENDIX B: TESTING FUNCTIONALS

The dimensionless Hamiltonian of Eq. (3) reads as

Ĥ (Z,a) = T̂ + V̂ext(a) + 1
Z

V̂ee, (B1)

where

T̂ = −
N∑

i

1
2
∇2

ri
(B2)

V̂ext(a) = −
N∑

ij

1
|ri − Rj |

, (B3)

V̂ee = 1
2

N∑

ij

1
|ri − rj |

, (B4)

and we made explicit the a dependence of the external
potential.

We now analyze the consequence of the high-density
scaling of Eq. (15) in the exchange-correlation func-
tional. Consider the Hohenberg-Kohn functional for the
Hamiltonian (B1):

FZ[n] = min
)→n

⟨)|T̂ + 1
Z

V̂ee|)⟩, (B5)

where the minimization is over all wave functions yielding
the given density. The Kohn-Sham potential is given by the
functional derivative

vHxc(r) = δTc[n,Z]
δn(r)

+ 1
Z

δVee[n,Z]
δn(r)

, (B6)

where Tc[n,Z] is the difference between the exact kinetic
energy ⟨)[n,Z]|T̂ |)[n,Z]⟩ and the KS one, and Vee[n,Z] =
⟨)[n,Z]|V̂ee|)[n,Z]⟩, with )[n,z] the minimizing wave
function in Eq. (B5).

It can be shown [50] that the two functionals in Eq. (B5)
can be written as

Tc[n] =
∫

n(r)vkin
c ([n],r)dr, (B7)

1
Z

Vee[n] = 1
2

∫
n(r)vcond

Hxc ([n],r)dr, (B8)

where vcond
Hxc and vkin

c can be defined in terms of correlated
density matrices. Performing the functional derivative (B6),
one obtains

δTc[n]
δn(r)

= vkin
c ([n],r) +

∫
n(r′)

δvkin
c ([n],r′)
δn(r)

dr′, (B9)

1
Z

δVee[n]
δn(r)

= vcond
Hxc ([n],r) +

∫
n(r′)

δvcond
xc ([n],r′)
δn(r)

dr′. (B10)

This is the same partition of Eq. (16) with the potentials
expressed in terms of correlation functions but which, as
mentioned above, at the equilibrium density coincide one by
one with our expressions with v

resp
xc given by the sum of the

second terms in Eqs. (B9) and (B10). In particular, we recover
the known result that the barrier is due to the correlation kinetic
energy part of the exchange-correlation functional [53,55] and
which here is identified with the anomalous scaling part of the
potential.

Normally (keeping a fixed), in the limit Z → ∞ the
physical kinetic energy functional tends to the KS kinetic
functional, so that Tc[n,Z] → 0, together with its functional
derivative, and there is no part of the potential that scales
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like Z0. Here, instead, imposing Eq. (13) (fixing t/U ), we
find that the first term in the functional derivative of Tc[n,Z]
[Eq. (B9)] stays finite. In the same region where vkin

c (r) stays
finite, the scaled density is vanishing [Eq. (14)] so that Tc[n,Z]
for Z → ∞ goes to zero, but not its functional derivative.

1. Functionals based on the expectation of Vee

Any approximate functional that uses the expectation value
of V̂ee on some wave function is doomed to fail for the Mott bar-
rier, as it will inherit the 1/Z prefactor in front of V̂ee, as shown
by Eq. (B6). Simply, neglecting the Tc part of the Kohn-Sham
functional, can not be compensated by the interaction part.
This is the case of the strictly correlated electron functional,
which corresponds to the minimum possible expectation value
of V̂ee in a given density. Its functional derivative is finite
everywhere [60] and it is not going to compensate the 1/Z
factor (see also Fig. 6 of Ref. [61]). Hybrid functionals, which
use the expectation value of V̂ee on the Hartree-Fock (HF) wave
function, have the same problem for their nonlocal exchange
part (in a restricted formalism, of course, which is the focus of
this paper). For example, in the simple case N = 2, both HF
and exact exchange reduce to minus 1

2 the Hartree potential,
a perfectly smooth function that is not going to blow up to
compensate the 1/Z prefactor.

Hybrid functionals have also a generalized gradient approx-
imation (GGA) component which is analyzed below.

2. Local and semilocal functionals

Local and semilocal functionals directly model Tc[n]
together with the xc part of Vee. The xc potential of LDA
and GGA functionals can be written in terms of atomic units
and scaled units as

vxc = vxc
(
a3

Bñ,a4
B∇̃ñ,a5

B∇̃2ñ, . . .
)

= vxc(Z3n,Z4∇n,Z5∇2n, . . .). (B11)

It is convenient to interrogate functionals at the midpoint of
an homoatomic bond where the part of the potential scaling as
Z0 should be larger, and the density scales as in Eq. (15).

We are interested in the high-density limit of functionals
(Sec. III D). For the LDA, gradient terms are not present and
vxc behaves as [62]

vLDA
xc = AaBñ1/3 Ha

= A
1
Z

n1/3 ∼ 1
Z4/3[ln(Z)]1/3

(Z2 Ha), (B12)

where A is a constant and the second line shows that in rescaled
units vLDA

xc (0) → 0. Imposing self-consistency does not change
this result since the density is driven to the noninteracting
density which is given by Eq. (14) with q = 1. One can also
consider points which are at a fixed position with respect to
the nucleus in rescaled units. In this case, the rescaled density
remains asymptotically constant as Z grows and vLDA

Hxc ∼ 1/Z.
Therefore, since there is not term scaling as Z0, we conclude
that LDA can not describe Mott phenomena in the one-band
limit.

For other functionals, specific forms must be considered
as the final result will depend on the scaling properties

of the potential. However, in general the behavior will be
dominated by the high-density limit of the functional where,
by construction, conventional functionals converge to the
noninteracting limit and, therefore, have no portions scaling
as Z0 in rescaled units.

As an explicit example, we follow Van Leeuwen and
Baerends [56] and we evaluate the potential at the origin
with the GGA corresponding to Becke (B88) exchange [3,63]
and Perdew’s correlation (P86) [57]. It was found that both
contributions have the same functional form at the midpoint
but with a different multiplicative constant so that the sum can
be written as

vGGA
xc = BaB

∇2ñ

ñ4/3
Ha = B

1
Z

∇2n

n4/3
= B

1
Z

1
n(0)1/3

∼ B
(ln Z)1/3

Z2/3
(Z2Ha) (B13)

with B > 0. By letting Z → ∞, one sees that the potential
goes to zero more slowly than LDA but still not enough to
provide the barrier. Again, self-consistency does not improve
the result.

Meta-GGA functionals, which use the KS kinetic energy
density as input ingredient, are normally used in the general-
ized KS framework, leading to single-particle equations with
a different structure than (D1) (e.g., with the gradient of the
orbitals). For this reason, the analysis of the barrier carried
out here is not directly applicable in this context. We remark
that meta-GGA’s also lead to symmetry breaking for stretched
bonds, with the problems listed in the Introduction.

APPENDIX C: OPTIMUM BASIS SET

As mentioned in main text and noted by several authors (see,
e.g., [64]), the inversion of KS equations to determine the KS
potential is a difficult task. For example, the value of the KS
potential with respect to the value at infinity (assumed to be
zero) is determined by the decay rate of the tail of the density
far away from the nuclei [65]. Therefore, an exponentially
small error in the density coming from an approximate orbital
basis can produce an order-one error in the potential. Thus,
we first present a computation of the optimum minimal basis
set to expand the field operator. For simplicity, we restrict to a
lattice wave function which depends on the single parameter
γ , but the method can be easily generalized to the full set of
parameters which specify the lattice wave function [39].

The variational energy is written as a functional of the
Wannier states to be optimized and of the parameters that
specify the lattice wave function as follows [38,39]:

E[φi ,φ
∗
i ,γ ] =

∑

ij

hijρji + 1
2

∑

ijkl

wij,klDkl,ij

+
∑

ij

,ij (⟨φi |φj ⟩ − δij ), (C1)

where ,ij is a Hermitian matrix of Lagrange parameters that
implements the constraint of the orthonormality of the orbitals.
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The variation with respect to φ∗
i leads to

∑

j

(

ρij ĥ(r) +
∑

kl

Dij,klwkl(r) − ,ij

)

φj (r) = 0, (C2)

where we introduced the potential

wkl(r) =
∫

dr′φ∗
k (r′)w(r,r′)φl(r′).

Along with the minimization with respect to γ , Eq. (C2)
defines a set of closed integrodifferential equations. Both prob-
lems have to be solved self-consistently since the electronic
matrix elements in Eq. (A10) depend on the orbitals [Eq. (A3)]
which in turn depend on the lattice density matrices through
Eq. (C2). The latter can be further simplified by transforming
to the natural orbital basis [39] where the one-body density
matrix and the Lagrange multiplier matrix become diagonal
ρ̄µν = δµν ρ̄µ with the bar denoting matrix elements in the
rotated basis.

Now, we restrict to the two-site case. Minimization respect
to γ yields back Eq. (A10). The natural orbitals are

ψ0(r) = φa(r) + φb(r)√
2

, ψ1(r) = φa(r) − φb(r)√
2

(C3)

and the density matrix takes the familiar Gutzwiller form
[40,59]

ρ̄0 = 1 + q, ρ̄1 = 1 − q, (C4)

with q given by Eq. (A12), while for D we have

D̄00,00 = 1 + q, D̄11,11 = 1 − q,

D̄10,10 = D̄01,01 = −
√

1 − q2, (C5)

all other elements vanish. The equations for the states ψµ can
be cast as effective single-particle equations, i.e.,

(
− 1

2∇2 + vext + vµ(r)
)
ψµ = ωµψµ, (C6)

where we set ,µ = ρµωµ and the potentials v0 and v1 are
defined by

v0(r) = w̄00(r) −

√
1 − q

1 + q
w̄01(r)

ψ1(r)
ψ0(r)

, (C7)

v1(r) = w̄11(r) −

√
1 + q

1 − q
w̄10(r)

ψ0(r)
ψ1(r)

. (C8)

Eventually, one can solve equations (C6)–(C8) to obtain the
natural orbitals and invert Eq. (C3) to obtain the Wannier
orbitals [39]. In the following, we will not follow this route
but we will use the above expressions to derive a set of
equations for the xc potential that can be evaluated directly
with approximate orbitals.

APPENDIX D: REVERSE-ENGINEERING POTENTIAL

Here, we derive the L+REP equations (17)–(19) for a
homoatomic bond. For a closed-shell system, the Kohn-Sham
equations read as

(
− 1

2∇2 + vKS(r) − ϵk

)
ϕk(r) = 0, (D1)

where vKS is given by Eq. (9). The density is given by

n(r) = 2
∑

k∈occ

ϕ∗
k (r)ϕk(r), (D2)

where k labels the Kohn-Sham states and the sum runs over
occupied states.

For two-electron systems only the k = 0 state is populated
in Eq. (D2) so

ϕ0(r) =
√

n(r)
2

and the effective Kohn-Sham potential can be easily expressed
as follows up to a constant ϵ0:

vKS(r) = ϵ0 + ∇2√n(r)
2
√

n(r)
. (D3)

The constant can be determined by requiring that the potential
at infinity is zero which defines ϵ0 as the highest occupied
Kohn-Sham orbital eigenvalue. According to DFT Koop-
mans theorem [65,66], it is related to the ionization energy
by ϵ0 = −EI .

Subtracting the external potential one obtains the Hartree-
exchange-correlation potential vHxc [cf. Eq. (9)]

vHxc(r) = vKS(r) − vext(r). (D4)

Given two Wannier orbitals, φa and φb, to expand the lattice
model (not necessarily optimized) we can define bonding and
antibonding orbitals as in Eq. (C3). The density of the two-site
problem (A11) can be rewritten in this basis set as

n(r) =
∑

µ=0,1

ρ̄µψ2
µ(r) = (1 + q)ψ2

0 (r) + (1 − q)ψ2
1 (r).

(D5)

Replacing Eq. (D5) in Eqs. (D3) and (D4), the Hxc potential
vHxc can be written as the sum of two contributions:

vHxc = vkin
c + vrc

Hxc, (D6)

where

vkin
c = (1 − q2)

2
|ψ1(r)∇⃗ψ0(r) − ψ0(r)∇⃗ψ1(r)|2

n2(r)
, (D7)

vrc
Hxc =

∑
µ ρ̄µψµ(r)∇2ψµ(r)

2 n(r)
− vext(r) − EI . (D8)

Transforming back to atomic orbitals in the first equation, one
obtains Eq. (17). Ironically, the contribution to vHxc which is
the hardest to conventional DFT methods, i.e., the part scaling
as Z0, does not require further work and is already in its
final form for numerical evaluation with suitable approximate
orbitals (we use orthogonalized atomic orbitals as discussed
in Appendix E). Furthermore, setting q = 0 one recovers the
exact results of Helbig et al. [cf. Eq. (11) of Ref. [53]] in
the extremely correlated case which are here generalized to
arbitrary correlation.

We find, however, that evaluation of the remaining terms
with approximate orbitals yields a potential in gross disagree-
ment with numerical methods due to the presence of the
Laplacian in Eq. (D8) (see Appendix F). Thus, in the following
we assume that the orbitals are optimized. Surprisingly, this
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condition can be relaxed in the final equations, effectively
eliminating the strong sensitivity to the basis.

Inserting the optimization equations (C7) and (C8) in (D8),
we can cancel the external potential term and eliminate the
Laplacian to obtain

vrc
Hxc(r) = −

∑
µ ρ̄µ[ωµ − vµ(r)]ψ2

µ(r)

n(r)
− EI . (D9)

This expression can be transformed to a more transparent and
computationally more convenient form by splitting vrc

Hxc in two
parts:

vrc
Hxc(r) = vresp

xc (r) + vcond
Hxc (r), (D10)

where

vcond
Hxc (r) =

∑
µ ρ̄µψ2

µ(r)vµ(r)

n(r)
(D11)

and

vresp
xc (r) = − (ω1 − ω0)ρ̄1ψ1(r)2

n(r)
+ EG − ϵg − ω0. (D12)

In deriving the above equations, we used the definition of the
density, Eq. (D5), and we set EI = ϵg − EG with ϵg denoting
the one-particle ground-state energy.

Using the explicit expression of the potentials vµ(r)
[Eqs. (C7) and (C8)], we can eventually recast the “cond”
term as

vcond
Hxc (r) =

∑
µν

√
ρ̄µρ̄νψµψνw̄µν

n(r)
. (D13)

By a direct calculation one can then easily recover the
expression of vcond

Hxc first obtained by Buijse et al. by a
completely different method [55], namely, Eq. (19), with the
two-particle density defined in Eq. (A6).

To arrive at the final expression for v
resp
xc , given in Eq. (18)

we use the two following identities:

ω1 − ω0 = h̄00 − h̄11 ≡ −2t, (D14)

EG = ω0 + h̄00 = 2ω0 − ⟨ψ0|v0|ψ0⟩. (D15)

Before coming to the proof of the above identities, let
us note that Eq. (D14) implies that the optimized bonding
orbital |ψ0⟩ corresponds to the highest Lagrange multiplier,
i.e., ω0 > ω1, the opposite of the naive guess. This sign change
is fundamental to obtain the correct behavior of v

resp
xc and the

correct decay of the density. The relation ω0 > ω1 indeed
implies that the behavior of the density at large distances is
governed by ω0 that, as suggested by (D15), is correctly related
to the ionization energy of the system [65]. Note, however,
that within our approximations, ω0 differs from the ionization
energy by a small constant δϵg = h00 − ϵg . The latter is due
to the relaxation of the orbitals upon ionization and it tends to
zero in the large-Z limit. By replacing Eqs. (D14) and (D15)
in (D12), we arrive at the final expression for v

resp
xc [Eq. (18)]

and we can easily show that limr→∞ v
resp
xc (r) = δϵg .

Equation (D14) can be proved by noting that from
Eqs. (C6) it follows that

ω1 − ω0 = h̄11 − h̄00 + ⟨ψ1|v1|ψ1⟩ − ⟨ψ0|v0|ψ0⟩, (D16)

while from the definition of q and of the vµ we have that

⟨ψ1|v1|ψ1⟩−⟨ψ0|v0|ψ0⟩= w̄11,11−w̄00,00 − 4γ w̄01,01

1 + γ 2

= 2(h̄00 − h̄11), (D17)

which replaced in Eq. (D16) leads to Eq. (D14). Notice that in
the last step on the right-hand side of Eq. (D17) we have used
the explicit expression of γ in terms of one- and two-electron
integrals given in Eq. (A10).

In order to demonstrate Eq. (D15), we can start from
the ground-state energy which can be recast in terms of the
energies ωi as follows:

EG = 1 + q

2
(ω0 + h̄00) + 1 − q

2
(ω1 + h̄11), (D18)

which using Eq. (D14) in turn leads to

EG = ω0 + h̄00 = ω1 + h̄11, (D19)

which concludes the proof of Eq. (D15).
To obtain the L+REP results shown in the figures we

replaced the bonding and antibonding states by appropriate
linear combinations of atomic orbitals, i.e., we set

ψ0(r) = ϕ1s(r − Ra) + ϕ1s(r − Rb)√
2(1 + S)

,

ψ1(r) = ϕ1s(r − Ra) − ϕ1s(r − Rb)√
2(1 − S)

, (D20)

where ϕ1s(r) = e−ξ |r|
√

ξ 3/π , S denotes the overlap integral
between ϕ1s(r − Ra) and ϕ1s(r − Rb), and ξ was obtained
variationally.

In this way, we obtain

vkin
c (0) = (1 − q)

2(1 + q)
1 + S

1 − S
ξ 2, (D21)

vcond
Hxc (0) = 1

2Z(1 + S)

∫ |ϕ1s(r − Ra) + ϕ1s(r − Rb)|2

|r|
dr.

(D22)

The integrals in vcond
Hxc are known [47]. For large Z (one-

band limit), the crossover regime between strong and weak
correlation lays at large separation a. Thus, we can set S ≃ 0
and ξ = 1, yielding Eqs. (20) and (21).

APPENDIX E: ORTHOGONALIZED ATOMIC ORBITALS

The optimized Wannier orbitals are approximated as

φa(r) = [ϕ1s(r − Ra) − α ϕ1s(r − Rb)]/
√
N , (E1)

φb(r) = [ϕ1s(r − Rb) − α ϕ1s(r − Ra)]/
√
N , (E2)

where α = (1 −
√

1 − S2)/S and N = (1 − S2)(1 + α2).
The one- and two-center integrals defining the parameters

of the generalized Hubbard model were calculated using the
above approximate expressions for φa and φb. Within this
approximation, the parameters v = haa , t = −hab, U , V ,
tc, and K are then simply linear combination of the same
parameters calculated with atomic orbitals which are exactly
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known [47] (indicated with a tilde in the equations below). We
have

v = ṽ + St̃

1 − S2
,

t = t̃ + Sṽ

1 − S2
,

U = 1
2(1 − S2)2

[(2 − S2)Ũ − 4t̃cS + S2Ṽ + 2S2K̃],

tc = 1
2(1 − S2)2

[2(1 + S2)t̃c − S(Ũ + Ṽ + 2K̃)],

V = 1
2(1 − S2)2

[−4St̃c + 2Ṽ + S2(Ũ − Ṽ + 2K̃)],

K = 1
2(1 − S2)2

[−4St̃c + 2K̃ + S2(Ũ + Ṽ )],

where we took K̃ ′ = K̃ .

APPENDIX F: WEAK SENSITIVITY OF THE REVERSE
ENGINEERING POTENTIAL TO ORBITAL BASIS ERRORS

As explained above, the L+REP potential requires an
inversion of the KS equation to obtain the noninteracting
potential that yields a given correlated density. This task
usually requires an extremely accurate basis to expand the
wave functions and the density. Such large sensitivity of the
potential is rooted in the presence of the Laplacian appearing
in our case in Eq. (D8), leading to the “cond” and “resp”
contributions while for the “kin” contribution the problem does
not arise. To exemplify the problem, lets ψµ be molecular
orbitals (MO) satisfying Eq. (C6) with vµ set to zero and
ω0 = ϵg . Using these definitions, we can rewrite Eq. (D8) as

vrc
Hxc = − t(1 − q)2ψ2

1 (r)
n(r)

+ EI − ϵg (MO), (F1)

where all quantities should be evaluated in the MO basis.
By comparing the above expression with Eqs. (18) and (19),
we notice that (i) there is no “cond” contribution scaling as
1/(Z R); (ii) apart from constants Eq. (F1) resembles v

resp
xc but

it has the opposite sign. A different but still wrong result is
obtained using in Eq. (D8) an approximated Gutzwiller density
constructed using linear combinations of atomic orbitals.
This extreme sensitivity problem is solved eliminating the
Laplacian using a saddle condition for the energy and leading
to Eqs. (17)–(19). Indeed, contrary to Eq. (F1), they reproduce
one by one the equations of Ref. [55] simply evaluating their
expressions in the same minimal basis we use.

Clearly, even using Eqs. (17)–(19) errors in the basis still
will lead to errors in the potential, however, they can be shown
to be quite mild in comparison with the errors which are
incurred using equations containing the Laplacian. Indeed,
vkin

xc (r) vanishes in the weak-coupling regime (q → 1) while
in the strong coupling it converges to the exact result in the
Heitler-London limit (q = 0) obtained by Helbig et al. [53].
In the intermediate-coupling regime, it provides a smooth
interpolation between these two extremes with the crossover at
the right place in parameter space, ensuring that errors remain
small.

As regards v
resp
xc (r) we instead see that it is the sum of

two parts: a spurious constant δϵg (which by definition does
not contribute to the barrier height) and a position-dependent
potential which also does not contribute to the barrier height
since it vanishes both at the origin and at infinity. The latter
contribution is always quite small for homoatomic systems
since the prefactor (1 − q)t is small both in the weak and in the
strong correlation limits. Notice that δϵg would cancel in the
approximation in which one uses the same orbitals to expand
the two-site Hubbard model in the one- and two-electron cases.

The last contribution, vcond
Hxc (r), requires special care as it

becomes numerically large for small Z and decays slow with
distance. The two-particle density can be evaluated expanding
the field operators in the minimal basis and using the lattice
ground state to evaluate the two-body lattice density matrix.
Fortunately, since there are no derivatives affecting the orbitals
(and some are integrated), an extremely accurate knowledge
of the orbitals is not required to obtain numerically accurate
results.

We conclude saying that, while in principle φa and φb in
Eqs. (17)-(19) are optimized Wannier orbitals whose shapes
minimize the total energy, they can be safely replaced by ap-
proximate orbitals. In doing the plots, they were approximated
with linear combinations of atomic 1s orbitals as defined in
Appendix E.

APPENDIX G: MANY-SITE CASE

Analogously to the theory of superexchange [54], in the
many-site case, we assume that in the strongly correlated limit
on each bond the exchange-correlation potential has a structure
which strongly resembles the one found in the diatomic
molecule. As we did for the two-electron molecule, in the
many-site many-electron case we therefore have to define an
appropriate reference lattice model, find an appropriate single-
particle basis set, and, after having estimated all parameters of
the lattice model, calculate the one- and two-body densities.

As regards the first task, we start from the single-band gen-
eralized lattice model introduced in Eq. (A2) and, consistently
with our assumptions concerning the potential, we truncate it
neglecting three-site and interbond correlations. In this way,
we essentially replicate the diatomic molecule Hamiltonian
for each couple of sites present in the system and we obtain

H1B ≃ Hchain ≡ U
∑

i

ni↑ni↓ − ε
∑

i

ni +
∑

(i,j )

H bond
i,j , (G1)

where the sum over (i,j ) is not limited to nearest-neighboring
sites but include also next-to-nearest neighbors and we set

H bond
ij = −t(c†iσ cjσ + H.c.) + V ninj

+ tc
∑

σ

(niσ̄ + nj σ̄ )(c†iσ cjσ + H.c.)

+K
∑

σσ ′

c
†
iσ c

†
jσ ′ciσ ′cjσ + K ′

∑

σ

c
†
iσ c

†
iσ̄ cj σ̄ cjσ .

In the above equation, the dependence of the matrix elements
t , V , tc, K , and K ′ on the distance i − j is implied.

As regards the Wannier states, defining the optimum single-
particle basis, we approximate them as linear combination of
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atomic orbitals, similarly to what we did in the diatomic case.
Namely, we assume that the Wannier orbital corresponding to
site i equals a linear combination of atomic orbitals centered
on the site i and on nearest- and next-nearest-neighboring sites
and it can be written as follows:

φi =
(

ϕi − α
∑

u

ϕi+u − β
∑

v

ϕi+v

)/√
N , (G2)

where u and v implement translations, respectively, on nearest-
and next-nearest-neighboring sites and the weights α and β and
the normalization N are determined imposing orthonormality.

Using the above equation, as in the diatomic case, we
express all integrals appearing in the potentials and the
different parameters appearing in the lattice Hamiltonian as
linear combinations of known two-center integrals involving
Slater orbitals and we calculate them analytically. Once this
is done, we determine the ground state of Hchain by exact
diagonalization and we calculate the hopping reduction factor
q and the two-body density matrix on the lattice needed to

finally estimate the potential by simply generalizing Eqs.
(17)–(19) as explained in the main text.

APPENDIX H: QUANTUM CHEMISTRY COMPUTATIONS

Accurate densities in Fig. 3 were obtained using full CI with
the ORCA computer code [67]. Very large basis sets were used
in order to have well-converged densities. In particular, we
used the fully uncontracted aug-mcc-pV8Z [68] for the case
Z = 1 and the same basis set with the exponent appropriately
scaled for the systems with Z > 1.

Accurate Kohn-Sham potentials used as reference in
Figs. 5, 7, and 6 were extracted by using Eq. (D3) starting
from the full CI densities obtained as above. The density was
computed on a cubic grid and spurious features in the KS
potential due to the basis set were removed by applying the
scheme described in Ref. [64]. For the four-site case [Fig. 8(b)]
full CI is not feasible. Therefore, we used the coupled cluster
method using aug-cc-pV5Z basis set with the code ORCA [67].

The LDA potentials and noninteracting densities were
calculated using CP2K code [43].
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B 61, 15676 (2000).
[39] Valentina Brosco, Zu-Jian Ying, and J. Lorenzana (unpublished).
[40] D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).

075154-15

http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1103/PhysRevLett.111.106401
http://dx.doi.org/10.1103/PhysRevLett.111.106401
http://dx.doi.org/10.1103/PhysRevLett.111.106401
http://dx.doi.org/10.1103/PhysRevLett.111.106401
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1103/PhysRevB.91.035126
http://dx.doi.org/10.1103/PhysRevB.91.035126
http://dx.doi.org/10.1103/PhysRevB.91.035126
http://dx.doi.org/10.1103/PhysRevB.91.035126
http://dx.doi.org/10.1103/PhysRevB.93.115127
http://dx.doi.org/10.1103/PhysRevB.93.115127
http://dx.doi.org/10.1103/PhysRevB.93.115127
http://dx.doi.org/10.1103/PhysRevB.93.115127
http://dx.doi.org/10.1103/PhysRevLett.107.216402
http://dx.doi.org/10.1103/PhysRevLett.107.216402
http://dx.doi.org/10.1103/PhysRevLett.107.216402
http://dx.doi.org/10.1103/PhysRevLett.107.216402
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRevB.77.245124
http://dx.doi.org/10.1103/PhysRevB.77.245124
http://dx.doi.org/10.1103/PhysRevB.77.245124
http://dx.doi.org/10.1103/PhysRevB.77.245124
http://dx.doi.org/10.1063/1.1562197
http://dx.doi.org/10.1063/1.1562197
http://dx.doi.org/10.1063/1.1562197
http://dx.doi.org/10.1063/1.1562197
http://dx.doi.org/10.1007/s002140050202
http://dx.doi.org/10.1007/s002140050202
http://dx.doi.org/10.1007/s002140050202
http://dx.doi.org/10.1007/s002140050202
http://dx.doi.org/10.1103/PhysRevA.51.4531
http://dx.doi.org/10.1103/PhysRevA.51.4531
http://dx.doi.org/10.1103/PhysRevA.51.4531
http://dx.doi.org/10.1103/PhysRevA.51.4531
http://dx.doi.org/10.1103/RevModPhys.70.897
http://dx.doi.org/10.1103/RevModPhys.70.897
http://dx.doi.org/10.1103/RevModPhys.70.897
http://dx.doi.org/10.1103/RevModPhys.70.897
http://dx.doi.org/10.1103/PhysRev.119.1153
http://dx.doi.org/10.1103/PhysRev.119.1153
http://dx.doi.org/10.1103/PhysRev.119.1153
http://dx.doi.org/10.1103/PhysRev.119.1153
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevLett.101.066403
http://dx.doi.org/10.1103/PhysRevLett.101.066403
http://dx.doi.org/10.1103/PhysRevLett.101.066403
http://dx.doi.org/10.1103/PhysRevLett.101.066403
http://dx.doi.org/10.1103/PhysRevB.77.073101
http://dx.doi.org/10.1103/PhysRevB.77.073101
http://dx.doi.org/10.1103/PhysRevB.77.073101
http://dx.doi.org/10.1103/PhysRevB.77.073101
http://dx.doi.org/10.1103/PhysRevB.84.245112
http://dx.doi.org/10.1103/PhysRevB.84.245112
http://dx.doi.org/10.1103/PhysRevB.84.245112
http://dx.doi.org/10.1103/PhysRevB.84.245112
http://dx.doi.org/10.1103/PhysRevLett.87.093001
http://dx.doi.org/10.1103/PhysRevLett.87.093001
http://dx.doi.org/10.1103/PhysRevLett.87.093001
http://dx.doi.org/10.1103/PhysRevLett.87.093001
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.37.7382
http://dx.doi.org/10.1103/PhysRevB.37.7382
http://dx.doi.org/10.1103/PhysRevB.37.7382
http://dx.doi.org/10.1103/PhysRevB.37.7382
http://dx.doi.org/10.1103/PhysRevB.41.9452
http://dx.doi.org/10.1103/PhysRevB.41.9452
http://dx.doi.org/10.1103/PhysRevB.41.9452
http://dx.doi.org/10.1103/PhysRevB.41.9452
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/PhysRevB.54.6364
http://dx.doi.org/10.1103/PhysRevB.54.6364
http://dx.doi.org/10.1103/PhysRevB.54.6364
http://dx.doi.org/10.1103/PhysRevB.54.6364
http://dx.doi.org/10.1103/PhysRevB.61.15676
http://dx.doi.org/10.1103/PhysRevB.61.15676
http://dx.doi.org/10.1103/PhysRevB.61.15676
http://dx.doi.org/10.1103/PhysRevB.61.15676
http://dx.doi.org/10.1103/RevModPhys.56.99
http://dx.doi.org/10.1103/RevModPhys.56.99
http://dx.doi.org/10.1103/RevModPhys.56.99
http://dx.doi.org/10.1103/RevModPhys.56.99
https://www.researchgate.net/publication/201877572_Electronic_structure_basic_theory_and_practical_methods?el=1_x_8&enrichId=rgreq-7a59745e53ff20034de128ed0217ddf8-XXX&enrichSource=Y292ZXJQYWdlOzMwNzQ0MTgxNTtBUzo0MDMzMjc4OTc2MjA0ODBAMTQ3MzE3MjI3MjIxNw==
https://www.researchgate.net/publication/201877572_Electronic_structure_basic_theory_and_practical_methods?el=1_x_8&enrichId=rgreq-7a59745e53ff20034de128ed0217ddf8-XXX&enrichSource=Y292ZXJQYWdlOzMwNzQ0MTgxNTtBUzo0MDMzMjc4OTc2MjA0ODBAMTQ3MzE3MjI3MjIxNw==
https://www.researchgate.net/publication/201877572_Electronic_structure_basic_theory_and_practical_methods?el=1_x_8&enrichId=rgreq-7a59745e53ff20034de128ed0217ddf8-XXX&enrichSource=Y292ZXJQYWdlOzMwNzQ0MTgxNTtBUzo0MDMzMjc4OTc2MjA0ODBAMTQ3MzE3MjI3MjIxNw==


ZU-JIAN YING et al. PHYSICAL REVIEW B 94, 075154 (2016)

[41] M. Karski, C. Raas, and G. S. Uhrig, Phys. Rev. B 72, 113110
(2005).

[42] N. Blümer and E. Kalinowski, Phys. Rev. B 71, 195102 (2005).
[43] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T.

Chassaing, and J. Hutter, Comput. Phys. Commun. 167, 103
(2005).

[44] P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends, Theor.
Chem. Acc. 99, 329 (1998).

[45] A. Savin, F. Colonna, and R. Pollet, Int. J. Quantum Chem. 93,
166 (2003).

[46] E. Fabiano and L. A. Constantin, Phys. Rev. A 87, 012511
(2013).

[47] J. C. Slater, Quantum Theory of Molecules and Solids Vol. 1
(McGraw-Hill, New York, 1965).

[48] J. P. Perdew, in Density Functional Methods in Physics, edited by
R. M. Dreizler and J. da Providencia (Springer, Boston, 1985),
pp. 265–308.

[49] R. van Leeuwen, O. Gritsenko, and E. J. Baerends, Z. Phys. D
33, 229 (1995).

[50] O. V. Gritsenko, R. van Leeuwen, and E. J. Baerends, J. Chem.
Phys. 104, 8535 (1996).

[51] R. van Leeuwen, O. V. Gritsenko, and E. J. Baerends, in Density
Functional Theory I, Vol. 180 of Topics in Current Chemistry,
edited by R. F. Nalewajski (Springer, Berlin, 1996), pp. 107–
167.

[52] O. V. Gritsenko, B. Ensing, P. R. T. Schipper, and E. J. Baerends,
J. Phys. Chem. A 104, 8558 (2000).

[53] N. Helbig, I. V. Tokatly, and A. Rubio, J. Chem. Phys. 131,
224105 (2009).

[54] P. Anderson, Phys. Rev. 79, 350 (1950).
[55] M. A. Buijse, E. J. Baerends, and J. G. Snijders, Phys. Rev. A

40, 4190 (1989).
[56] R. van Leeuwen and E. J. Baerends, Int. J. Quantum Chem. 52,

711 (1994).
[57] J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
[58] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792

(2008).
[59] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987).
[60] G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, Phys. Rev. A

85, 062502 (2012).
[61] F. Malet, A. Mirtschink, K. Giesbertz, L. Wagner, and P. Gori-

Giorgi, Phys. Chem. Chem. Phys. 16, 14551 (2014).
[62] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[63] R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421

(1994).
[64] A. P. Gaiduk, I. G. Ryabinkin, and V. N. Staroverov, J. Chem.

Theory Comput. 9, 3959 (2013).
[65] C. O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).
[66] M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745

(1984).
[67] F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73

(2012).
[68] S. L. Mielke, D. W. Schwenke, and K. A. Peterson, J. Chem.

Phys. 122, 224313 (2005).

075154-16


