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Exchange–correlation functionals from the strong
interaction limit of DFT: applications to model
chemical systems

Francesc Malet,* André Mirtschink, Klaas J. H. Giesbertz, Lucas O. Wagner and
Paola Gori-Giorgi*

We study one-dimensional model chemical systems (representative of their three-dimensional counterparts)

using the strictly-correlated electron (SCE) functional, which, by construction, becomes asymptotically exact

in the limit of infinite coupling strength. The SCE functional has a highly non-local dependence on

the density and is able to capture strong correlation within the Kohn–Sham theory without introducing any

symmetry breaking. Chemical systems, however, are not close enough to the strong-interaction limit so

that, while ionization energies and the stretched H2 molecule are accurately described, total energies are in

general too low. A correction based on the exact next leading order in the expansion at infinite coupling

strength of the Hohenberg–Kohn functional largely improves the results.

1 Introduction
Despite the enormous success of Kohn–Sham (KS) density
functional theory (DFT)1 when applied to the study of many
chemical systems,2 there are still important cases for which
standard approximate exchange–correlation functionals are
inaccurate.2–4 In particular, systems in which rearrangement
of electrons within some (near-degeneracy) or many (strong
correlation) partially filled levels is important, such as transition
metals, stretched bonds and Mott insulators, represent a big
challenge for KS DFT.2,3

Similarly to the unrestricted Hartree–Fock method, KS DFT
with approximate functionals tries to mimic the physics of
strong electronic correlation with symmetry breaking, which, in
many cases (but not always), yields reasonable energies. In
complex systems, however, symmetry breaking can occur erratically
and can be very sensitive to the functional chosen.3 When many
different broken-symmetry solutions are competing it becomes
difficult to keep the potential energy surfaces continuous. The
rigorous KS formulation is also partially lost, and many properties
are wrongly characterized.5,6

It is important to keep in mind that Kohn–Sham DFT is, in
principle, an exact theory, which should be able to yield the
right ground-state density and energy of strongly-correlated
systems without resorting to symmetry breaking. The quest
for approximate exchange–correlation functionals that are able

to achieve this fundamental goal is a very active research
field,2,7–10 which aims at solving what is arguably one of the
most important problems in electronic structure theory.

Recently, an alternative approach to the standard way of
constructing functionals for KS DFT has been proposed, in which
the knowledge of the strong-interaction limit of DFT is used to build
an approximation for the exchange–correlation energy and potential.
The starting point is the so-called strictly-correlated-electron (SCE)
reference system, introduced by Seidl and coworkers,11–13 which has
the same density as the real interacting one, but in which the
electrons are infinitely correlated instead of non-interacting. The SCE
functional has a highly non-local dependence on the density, but its
functional derivative can be easily constructed,14,15 yielding a local
one-body potential that can be used in the Kohn–Sham scheme to
approximate the exchange–correlation term. The SCE functional
tends asymptotically to the exact Hartree-exchange–correlation func-
tional in the extreme infinite-correlation (or low-density) limit.

Very promisingly, the first applications of this ‘‘KS SCE’’ DFT
approach, performed on one-dimensional (1D) semiconductor
quantum wires14,15 and on two-dimensional quantum dots,16 have
shown that the SCE exchange–correlation potential is able to
describe the physics of the strongly-correlated regime within
the restricted Kohn–Sham scheme, truly making non-interacting
electrons behave as strongly correlated ones. It is thus natural to
ask whether with this formalism one can also cure the deficiencies
of standard DFT approximations in chemistry.

The physics of strong correlation encoded in the highly non-
local density dependence of the SCE functional, however, does
not come for free: the SCE problem is sparse but nonlinear, and
a general algorithm for its evaluation following the original
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formulation is still an open problem. Progress has been made
recently17 by using the reformulation of the SCE functional as a
mass transportation theory (or optimal transport) problem,18–20

which allows us to evaluate the SCE functional and its functional
derivative by means of a maximization under linear constraints,
although the procedure is still cumbersome and needs further
developments.17 Probably, it will be necessary to devise approximate
ways to deal with the SCE physics in the general three-
dimensional case.

Before venturing into the challenging task of implementing
the SCE functional (or approximations thereof) for general
three-dimensional systems, we feel it is important to under-
stand whether this functional could play a role in chemistry.
For this reason, we consider here a simple one-dimensional
model that has recently been shown to be a useful laboratory
method to test functionals for chemical problems,21,22 offering
a reasonably close description of the three-dimensional coun-
terparts and being computationally much less demanding.

The paper is organized as follows. In Section 2 we briefly
review the KS SCE approach at the zeroth order of approxi-
mation, and we introduce a properly renormalized higher-order
correction. In Section 3 we present the studied one-
dimensional models and we describe the details of the actual
calculations. The results are then presented and discussed in
Section 4. Finally, in Section 5 we draw some conclusions and
outlook for future studies.

2 The KS SCE approach
As a brief introduction to the KS SCE14,15 approach, we
first consider the partitioning of the total energy density
functional for an N-electron system in the external potential

V̂ext ¼
PN

i¼1
vext rið Þ as E [r] = F [r] +

Ð
r(r)vext(r)dr, with the internal

energy (kinetic plus electron–electron repulsion) expressed
as23,24

F ½ r% & min
C!r

Ch jT̂ þ V̂ee Cj i; (1)

where the search is only over fermionic wave functions. It is
the delicate interplay of the kinetic energy and the electron–
electron interaction that makes the evaluation of this func-
tional a daunting task. If the minimization would only contain
the kinetic energy,

Ts½ r% & min
C!r

Ch jT̂ Cj i; (2)

it is easy to determine its minimum. In particular, the wave
function C that achieves this minimum is often a single Slater
determinant composed of orbitals that satisfy the Kohn–Sham
equations1

(r
2

2
þ vext½r%ðrÞ þ vHxc½r%ðrÞ

" #
fiðrÞ ¼ eifiðrÞ: (3)

The Hartree-exchange–correlation potential originates as a
Lagrange multiplier to ensure that the Kohn–Sham system

yields the required density r and is related to the remainder
EHxc[ r] & F [ r] ( Ts[r] as its functional derivative

dEHxc½ r%
drðrÞ

¼ vHxc½ r%ðrÞ: (4)

Seidl and co-workers have demonstrated that the functional
F [r] can also be explicitly evaluated if it would only contain the
electron–electron interaction11,25,26

VSCE
ee ½ r% & min

C!r
Ch jV̂ee Cj i: (5)

This strictly-correlated-electron (SCE) functional is the strong
interaction limit of F [ r], describing the situation in which the
kinetic energy is negligible. The SCE functional is the natural
counterpart of the Kohn–Sham kinetic energy as it defines,
instead of a non-interacting reference system, one in which the
electrons are infinitely (or perfectly) correlated: if one of the
electrons, which can be taken as the reference and labeled as
‘‘1’’, is found with some probability at a given position r, the
other N ( 1 electrons will be found, with the same probability,
at the positions ri & fi [ r](r) (i = 2,. . .N).12,13,25 Since the fi only
depend on r, they are called co-motion functions. They are highly
non-local functionals of the density and satisfy, for each r, the
set of differential equations25

r(r)dr = r(fi(r))dfi(r) (i = 2,. . .,N) (6)

as well as the following group properties that ensure that the N
electrons are indistinguishable (so that there is no dependence
on which electron is chosen as ‘‘electron 1’’)

f1ðrÞ & r;
f2ðrÞ & fðrÞ;
f3ðrÞ ¼ fðfðrÞÞ;
f4ðrÞ ¼ fðfðfðrÞÞÞ;

..

.

fðfð. . . fðfðrÞÞÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N times

¼ r:

(7)

Fig. 1 schematically illustrates the SCE reference system for
the case of 4 electrons in a given density r(r). The figure shows
three configurations, each of them corresponding to the reference
electron being at a different position r (represented by an empty
circle). The other three electrons adapt their positions, given by
the co-motion functions (represented by solid symbols), in
order to minimize the total Coulomb repulsion and under the
constraint that the superposition of all the possible configurations

Fig. 1 Schematic illustration of the SCE reference system for a given
density r(r) and N = 4 electrons. The empty circle represents the position
of the reference particle, which is different in each case. The other electrons
must adapt their relative positions in such a way that the superposition of all
the possible configurations (one for each r) yields the density r(r).
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(one for each r) yields the density of the physical system r(r). The
SCE system thus represents a smooth N-electron quantum-
mechanical density by means of an infinite superposition of
classical configurations, which fulfill eqn (6) for every r. The square
modulus of the corresponding SCE wave function (which becomes
a distribution in this limit18,19) can be written as

CSCE r1; r2; . . . ; rNð Þj j2 ¼
1

N!

X

Y

ð
dr

rðrÞ
N

d r1 ( fYð1ÞðrÞ
& '

) d r2 ( fYð2ÞðrÞ
& '

* * * d rN ( fYðNÞðrÞ
& '

;

(8)

where Y denotes a permutation of 1,. . .,N, such that r(r) =
N
Ð

|CSCE(r,r2,. . .,rN)|2 dr2* * *drN. The SCE system can thus be visua-
lized as a ‘‘floating Wigner crystal’’ describing the density r(r).

The co-motion functions are the key building blocks for the
SCE functional, analogous to the Kohn–Sham orbitals for the
non-interacting kinetic energy functional Ts[ r]. They can be
used to express the functional V SCE

ee [r] explicitly as25,27

VSCE
ee ½ r% ¼

ð
dr

rðrÞ
N

XN(1

i¼1

XN

j¼iþ1

1

f iðrÞ ( f jðrÞ
(( ((

¼ 1

2

ð
drrðrÞ

XN

i¼2

1

r( f iðrÞj j
:

(9)

An important property of the SCE system is the following:
since the position of one electron at a given r determines the
other N ( 1 electronic positions, the net Coulomb repulsion
acting at a certain position r becomes a function of r itself. As a
consequence, this force can be written in terms of the negative
gradient of some one-body local potential vSCE(r),15 such that

(rvSCE½ r%ðrÞ & FCoulombðrÞ ¼
XN

i¼2

r( f i½ r%ðrÞ
r( f i½ r%ðrÞj j3

: (10)

From the above equation one can see that for a finite system
in the limit |r| - N the potential vSCE[ r](r) is given as

vSCE½ r%ðjrj ! 1Þ ¼
N ( 1

jrj
: (11)

Furthermore, it can be shown that it satisfies the important
exact relationship15

vSCE½ r%ðrÞ ¼
dVSCE

ee ½ r%
drðrÞ

; (12)

thus providing a powerful shortcut to the construction of the
functional derivative of the SCE functional.

The zeroth-order ‘‘KS SCE’’ approach15 approximates the
Hohenberg–Kohn (HK) functional of eqn (1) as

F ½ r% +min
C!r

Ch jT̂ Cj iþmin
C!r

Ch jV̂ee Cj i

¼ Ts½ r% þ VSCE
ee ½ r%;

(13)

yielding a rigorous lower bound to the exact energy,14,15 since

Ts[r] + V SCE
ee [r] r F [ r]. (14)

Equivalently, comparing eqn (4) and (12), we see that KS SCE
uses vSCE to approximate the Hartree and exchange–correlation
potential,

vHxc(r) C vSCE(r). (15)

Note that eqn (11) implies that vSCE as an approximate vHxc

has the right asymptotics in the limit |r| - N.
Eqn (14) shows that the KS SCE DFT approach treats both

the kinetic energy and the electron–electron interaction on the
same footing, letting the two terms compete in a self-consistent
way within the Kohn–Sham scheme. Furthermore, the method
becomes asymptotically exact both in the very weak and very strong
correlation limits.14,15 At intermediate correlation regimes, how-
ever, it can seriously underestimate the total energy.15

2.1 Higher-order corrections to zeroth-order KS SCE

In order to discuss corrections to KS SCE, it is useful to rewrite
the approximation of eqn (13) in the language of the usual
adiabatic connection (coupling-constant integration) of
DFT.28,29 The HK functional of eqn (1) and the KS kinetic
energy functional of eqn (2) can be considered as the value at
l = 1 and l = 0 of a more general functional Fl[r], in which the
electronic interaction is rescaled by a coupling strength parameter l,

Fl½ r% ¼ min
C!r

Ch jT̂ þ lV̂ee Cj i: (16)

By denoting Cl[r] the minimizing wave function in eqn (16),
and by defining

Wl[r] & hCl[r]|V̂ee|Cl[r]i ( EHartree[r], (17)

one obtains the well-known exact formula28 for the exchange–
correlation functional Exc[r],

Exc½ r% ¼
ð1

0
Wl½ r%dl: (18)

The functional V SCE
ee [r] ( EHartree[r] is the zeroth-order term

in the expansion of Wl[r] when l - N. The next leading term
in the series is given by26,30

Wl!1½r% ¼W1½ r% þ
W1

0 ½ r%ffiffiffi
l
p þO l(pð Þ (19)

WN[r] = V SCE
ee [r] ( EHartree[r] (20)

W1
0 ½ r% ¼ VZPE

ee ½ r%; (21)

where ZPE stands for ‘‘zero-point energy’’ and p Z 5/4 – see ref. 26
for further details. Physically, the zeroth-order term V SCE

ee [r] in the
expansion (21) corresponds to the interaction energy when the
electrons are ‘‘frozen’’ in the strictly-correlated positions of the SCE
floating Wigner crystal. The ZPE term in the series takes into account
small vibrations of the electrons around their SCE positions, and it is
given by (for electrons in D dimensions)26

VZPE
ee ½ r% ¼

1

2

ð
dr

rðrÞ
N

XDN(D

n¼1

onðrÞ
2

: (22)

The on(r) are the zero-point-energy vibrational frequencies
around the SCE minimum,26 given by the square root of the
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eigenvalues of the Hessian matrix entering the expansion up to
the second order of the potential energy of the electrons in the
SCE system.26

We can see that the KS SCE approximation of eqn (13)
corresponds to setting Wl[r] = WN[r] in the integrand of
eqn (18), as schematically shown by the red area in the upper
panel of Fig. 2. The exact correction to KS SCE would be the
sum of the kinetic correlation energy,

Tc[r] = hCl=1[r]|T̂|Cl=1[r]i ( Ts[r], (23)

and of the electron–electron decorrelation energy,12,31

V d
ee[r] = hCl=1[r]|V̂ee|Cl=1[r]i ( V SCE

ee [r]. (24)

If we insert the expansion of eqn (19) into eqn (18) we obtain

Tc[r] + V d
ee[r] E 2V ZPE

ee [r]. (25)

This correction, however, is in general way too large, as it
includes the positive contribution to the integrand coming
from the integrable divergence pl(1/2, as represented by the
blue area in the upper panel of Fig. 2. In order to get a more
realistic correction, we consider here a simplified interaction-
strength-interpolation (ISI)29,32 which sets the value of Wl[r] at
l = 0 equal to its exact value, the exchange energy Ex[r],

W isiZPE
l ½r% ¼W1½r% þ

W1
0 ½r%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lþ a½r%
p ; (26)

a½ r% ¼ W1
0 ½ r%

Ex½ r% (W1½ r%

" #2
: (27)

In this way, we remove the excess positive contribution, as
shown in the lower panel of Fig. 2. We then obtain the
renormalized correction

Tc½ r% þ Vd
ee½ r% + 2VZPE

ee ½ r%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a½ r%

p
(

ffiffiffiffiffiffiffiffiffi
a½ r%

p* +
: (28)

This correction is size-consistent only when a system dis-
sociates into equal fragments. A full size-consistent approxi-
mation would require a local interpolation along the adiabatic
connection, as discussed in ref. 27.

3 Details of the calculations for
one-dimensional model systems
We have considered one-dimensional (1D) models for different
atoms and ions and for the H2 molecule. In order to avoid the
divergence of the Coulomb interaction in one dimension,
we consider the electrons and the nuclei to interact via a soft-
Coulomb potential given by

vsoftðxÞ ¼
q1q2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p ; (29)

where q1 and q2 are the charges of the nuclei/electrons. For the
calculations presented here we have considered nuclear
charges q1 = 1, 2, 3 and 4, corresponding to the elements H,
He, Li and Be, respectively. In each case we have also studied
different ionic species. Finally, for the H2 molecule, we have
considered interatomic separations RH–H in the range between
0 and 20 atomic units.

3.1 Calculation of the co-motion functions and of the SCE
potential

In one dimension, the co-motion functions fi(x) can be calculated
analytically by integrating eqn (6) for a given density r(x),11,18,33

choosing boundary conditions that make the density between two
adjacent strictly-correlated positions always integrate to 1 (total
suppression of fluctuations),11 as schematically illustrated in Fig. 3,

ðfiþ1ðxÞ

fiðxÞ
rðx0Þdx0 ¼ 1; (30)

and ensuring that the fi (x) satisfy the required group properties of
eqn (7).11,18,25 This yields

fiðxÞ ¼
Ne
(1 NeðxÞ þ i ( 1½ % x , aNþ1(i

Ne
(1 NeðxÞ þ i ( 1(N½ % x4 aNþ1(i;

(
(31)

where the function Ne(x) is defined as

NeðxÞ ¼
ðx

(1
r x0ð Þdx0; (32)

and ak = Ne
(1(k). Eqn (10) becomes in this case

vSCE
0 ½ r%ðxÞ ¼

XN

i¼2
w0 x( fiðxÞj jð Þsgn x( fiðxÞð Þ; (33)

Fig. 2 Schematic representation of the functional Wl[r] of eqn (17) as a
function of l. The KS SCE approximation corresponds to setting the
exchange–correlation energy equal to the red area in the upper panel. Simply
adding the zero point term yields an overcorrected KS SCE energy, including
also the positive blue area in the upper panel. The simple approximation of
eqn (26)–(28) removes the excess energy by shifting the value of Wl[r] at l = 0.

Paper PCCP



This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys., 2014, 16, 14551--14558 | 14555

where w(x) denotes the interaction between the particles, which
will be the soft-Coulomb interaction w(x) = vsoft(x)/q1q2 of
eqn (29) in our case, and w0(x) is its derivative. Note the highly
non-local dependence of the co-motion functions on r(x), as
clearly shown by eqn (31) and (32), and the great simplification
of the functional derivative of the SCE functional provided by
eqn (33).

To perform practical calculations, one must proceed self-
consistently in three steps: (i) generate the co-motion func-
tions via eqn (31) and (32) for a given density r(x); (ii)
calculate vSCE(x) by integrating eqn (33) with the boundary
condition vSCE[r](|x| - N) = 0; (iii) use the approximation
vHxc(x) E vSCE(x) to solve the Kohn–Sham eqn (3). The total
energy is then obtained by adding the external potential
contribution to eqn (13). As said, we work in the original
spin-restricted KS framework, in which each spatial orbital is
doubly occupied.

3.2 Calculation of the zero-point energies (ZPE) in 1D

To compute the ZPE we start from the classical energy expres-
sion of the SCE system as a function of the coordinates of the
individual electrons. Since the kinetic energy in the l - N
limit becomes infinitely small, only the potential parts
remain: the interaction between the electrons and the SCE
potential

Epot x1; . . . ; xNð Þ ¼
XN(1

i¼1

XN

j¼iþ1
w xi ( xj
(( ((& '

(
XN

i¼1
vSCE xið Þ: (34)

Note that the SCE potential counteracts exactly the repulsive
forces due to the interaction, making Epot stationary on the 1D
subspace of RN parametrized by f(x) & {x1 = f1(x) = x, x2 =
f2(x),. . .,xN = fN(x)}. The diagonal contributions to the Hessian
are readily evaluated to be

@xi
2EpotðfðxÞÞ ¼

XN

kai

w00 fiðxÞ ( fkðxÞj jð Þr fiðxÞð Þ
r fkðxÞð Þ

(35)

and the off-diagonal elements become (i a j)

@xi
@xj

Epot(f(x)) = (w00(| fi(x) ( fj (x)|). (36)

In the special case of a two-electron system, the matrix
elements of the Hessian simplify to

@x1
2Epotðx; f ðxÞÞ ¼ w00 x( f ðxÞj jð Þ rðxÞ

rð f ðxÞÞ;

@x2
2Epotðx; f ðxÞÞ ¼ w00 x( f ðxÞj jð Þrð f ðxÞÞ

rðxÞ ;

@x1@x2Epotðx; f ðxÞÞ ¼ ( w00 x( f ðxÞj jð Þ;

(37)

where we used f1(x) = x and have a set f (x) = f2(x). The Hessian is
readily diagonalized and gives the zero-point frequency

oðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w00 x( f ðxÞj jð Þ rðxÞ
rð f ðxÞÞ

þ rð f ðxÞÞ
rðxÞ

" #s

; (38)

which can be used in the ZPE expression (22) to calculate the
ZPE correction. The other eigenvalue is zero as expected, since
the SCE system corresponds to a floating Wigner crystal, and
Epot should be degenerate on {f(x)|x A R}. Hence, the energy
surface is flat in this direction, giving a vanishing eigenvalue in
the Hessian of the classical potential energy.

For N 4 2 we have diagonalized numerically the Hessian
matrix on our grid. This needs to be done just in one interval
between two adjacent ai = Ne

(1 (i), e.g. for x A [a1,a2], because
the properties of the co-motion functions ensure that

ð1

(1
dx

rðxÞ
N

XN(1

n¼1
onðxÞ ¼

ðaiþ1

ai

dxrðxÞ
XN(1

n¼1
onðxÞ: (39)

A warning should be added because the soft Coulomb
interaction w(x) = vsoft(x)/q1q2 of eqn (29) is not convex for
x o 2(1/2. As evident from the formulas for N = 2 of eqn (38),
the ZPE breaks down when w00(|x ( f (x)|) o 0. For all the
systems studied here, the minimum possible SCE electron–
electron distance is always larger than 2(1/2, so that the non-
convexity of w(x) does not pose any problem.

3.3 Comparison with other approaches

We validate our results by comparing them with those obtained
from the density matrix renormalization group (DMRG) as
described in ref. 22. For the H2 potential energy curve, we have
also carried out full CI calculations on a numerical grid. We
have also performed, for comparison, calculations using the
Kohn–Sham local-density-approximation in both the spin-
restricted (LDA) and spin-unrestricted (LSDA) formulations.
The parametrization of the L(S)DA exchange–correlation func-
tional with soft-coulomb interaction is taken from ref. 21.

4 Results
4.1 1D atoms and ions

Table 1 shows the total energies for different atomic elements,
comparing the results obtained using the KS SCE, DMRG and
KS L(S)DA approaches. The renormalized ZPE correction
‘‘isiZPE’’ of eqn (28) has been added at the postfunctional level
to the KS SCE self-consistent energies. We can see that KS SCE
largely underestimates all the total energies (except for the N = 1

Fig. 3 Schematic illustration of the co-motion functions in 1D. Two
adjacent strictly correlated positions are always separated by a distance
such that the density between them integrates exactly to one electron.
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systems, for which it is exact), providing a lower bound that is
not very tight, and resulting in an accuracy worse than the one
of L(S)DA. Adding the bare ZPE correction of eqn (25) yields
energies way too high, as discussed in Section 2.1: for example,
for Li we obtain (3.66 H and for Be (5.92 H. The isiZPE
correction, instead, improves the results consistently, getting
much closer to the DMRG calculations than L(S)DA.

Particularly interesting is the case of the negative ions,
which are a notorious problem in approximate KS DFT.
Similarly to the 3D case, the anions are all unbound in
L(S)DA, while KS SCE overbinds, yielding a bound system also
for He( and Li(, which are unbound in DMRG. The inclusion
of the isiZPE term correctly predicts H( to be bound (with a
rather good energy) and He( and Li( to be unbound (as their
energy becomes higher than that of the corresponding neutral
systems). Note that in ref. 21 the 1D He( and Li( were predicted
to be bound, although the value reported for the energy of Li(

was higher than the one of Li. Using DMRG we found these two
1D anions to be unbound.

The KS SCE method is, in all respects, a standard KS
formalism with a highly non-local exchange–correlation func-
tional, whose functional derivative yields a local multiplicative
KS potential. We can thus compare the highest KS eigenvalue
with the exact ionization potential. This is done in Table 2,
which is the analogue of Table 1 for the comparison of the
negative of the highest occupied (HOMO) KS eigenvalues with
the ionization energies obtained from DMRG. We see that the
KS SCE HOMO yields quite accurate estimates of the ionization
energies, thanks to the right asymptotic behavior of the SCE
potential. Since we applied the isiZPE correction only at the
postfunctional level, there are no corrected HOMO eigenvalues.

4.2 1D H2 molecule

Fig. 4 shows the dissociation energy curves obtained from the
various methods. One can see that whereas the KS LDA, KS
LSDA and restricted Hartree–Fock (HF) energies are relatively
close to the CI values near equilibrium, the KS SCE approach
yields a large error due to its overestimation of the electronic
correlation. As the interatomic distance increases, however, one
can see that while the spin-restricted LDA and HF energies as

usual become too positive, the KS SCE result becomes now
increasingly more accurate, tending to the exact dissociation
limit. The ability to correctly describe this limit is remarkable
in a spin-restricted formalism.

In the figure we also show the energy curve obtained when
the full ZPE correction and the renormalized isiZPE corrections
are added, at the postfunctional level, to the zeroth-order KS
SCE energies. One can see that, as expected from the discussion
in Section 2.1, the addition of the bare ZPE yields energies way
too high. The inclusion of the isiZPE, instead, gives very good
results for RH–H t 4 a.u, but displays a ‘‘bump’’ in the potential
energy curve, which now tends from above to the exact dis-
sociation limit, reaching it only at RH–H \ 20.

Fig. 5 shows the electronic densities obtained using the KS
SCE, KS LDA, and CI approaches for different interatomic
separations RH–H. One can see that for RH–H = 1.5, which
corresponds to a near-equilibrium configuration, the KS SCE
density is slightly less peaked at the midbond due to the above-
mentioned overestimation of the correlation. The LDA
approach shows a very good agreement with the exact result.

Table 1 Total energies obtained using the different approaches. The
DMRG data are from ref. 22

LDA LSDA DMRG KS SCE KS SCE + isiZPE

H (0.60 (0.65 (0.67 (0.67 (0.67
H( — — (0.73 (0.89 (0.75
He (2.20 (2.20 (2.24 (2.38 (2.24
He( — — — (2.42 (2.21
He+ (1.41 (1.45 (1.48 (1.48 (1.48
Li (4.16 (4.18 (4.21 (4.43 (4.21
Li( — — — (4.51 (4.17
Li+ (3.85 (3.85 (3.90 (4.02 (3.90
Li2+ (2.26 (2.30 (2.34 (2.34 (2.34
Be (6.76 (6.76 (6.79 (7.12 (6.77
Be+ (6.39 (6.41 (6.45 (6.65 (6.45
Be2+ (5.56 (5.56 (5.62 (5.72 (5.61
Be3+ (3.13 (3.18 (3.21 (3.21 (3.21

Table 2 The same as Table 1 for the ionization energies (using the HOMO
eigenvalue for the DFT approaches). The KS SCE results correspond to the
zeroth-order approximation

(eLDA
HOMO (eLSDA

HOMO DMRG (eKSSCE
HOMO

H 0.35 0.41 0.67 0.67
H( — — 0.06 0.089
He 0.48 0.48 0.75 0.72
He+ 1.12 1.18 1.48 1.48
Li 0.14 0.17 0.31 0.32
Li+ 1.24 1.24 1.56 1.50
Li2+ 1.95 2.00 2.34 2.34
Be 0.16 0.16 0.34 0.34
Be+ 0.60 0.63 0.83 0.81
Be2+ 2.06 2.06 2.41 2.34
Be3+ 2.81 2.86 3.21 3.21

Fig. 4 Dissociation energy curves for H2 corresponding to the different
approaches.
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As the interatomic separation increases, here with RH–H = 5, the
LDA largely overestimates the density at the midpoint, clearly
reflecting its inability to properly describe the molecular dis-
sociation process. The KS SCE approach, instead, shows an
improving tendency in the direction of the exact result, in
accordance with the energy curve of Fig. 4. Finally, in the
dissociation limit, represented in the figure by RH–H = 15, the
agreement between the KS SCE and CI densities is excellent,
whereas the spin-restricted LDA density is slightly less
localized.

The rapid decrease of the exact density at the midbond as
the interatomic separation RH–H increases is related to the
existence of a barrier in the corresponding Kohn–Sham
potential,34,35 which we show in Fig. 6. The exact barrier has
a component that is known to saturate for large internuclear
distances RH–H with a height determined by the ionization
potential.35 This component is due to the kinetic correlation
energy34,35 and is thus not captured by the SCE functional,
which lacks the kinetic energy contribution. The KS SCE
barrier, thus, decreases when RH–H increases, and becomes
small at large RH–H. However, at large internuclear distances,
the energetic contribution of the barrier is negligible and
therefore even a very small barrier (as the one obtained in KS
SCE) is enough to get an accurate localized density and the
correct energy at dissociation. When the confining potential is
harmonic, as in the quantum wires and quantum dots studied
in ref. 14–16, the barriers remain finite in the KS SCE potential
also at very low densities. In LDA we see that at large RH–H there
is a barrier localized on the atoms rather than in the midbond,
leading to overestimation of the charge in the bond.

5 Conclusions and perspectives
The strictly-correlated-electron functional provides an alterna-
tive route to the construction of approximations for KS DFT.
Instead of following the standard path of including more and
more ingredients (‘‘Jacob’s ladder’’)36,37 such as the local
density, the local density gradients, the Kohn–Sham local
kinetic energies, etc., the new ingredient here is the non-
locality encoded in the SCE functional and higher-order
corrections.

While for low-dimensional nanodevices, which can reach
very low densities because of their stronger confining poten-
tials, the KS SCE approach is very accurate,15,16 chemical
systems are in general not close enough to the strong-
interaction limit and the approach underestimates the total
energies. We can see, however, that the SCE functional is able
to capture the strong correlation of a stretched bond and, with
a correction renormalized with exact exchange, to yield accurate
results for total energies, predicting the delicate physics of
negative ions. Thanks to the right asymptotic properties of
the SCE potential, the KS SCE HOMO also yields an accurate
estimate of ionization energies.

Overall, it seems promising to use the SCE physics as an
ingredient to build approximate functionals. An exact evalua-
tion of the co-motion functions in the general 3D case might
turn out to be too demanding (although progress has been
made recently through a different approach17). However, it
should be possible to build approximate co-motion functions
or, more generally, non-local functionals inspired to the SCE
mathematical structure.

Fig. 5 Densities of the H2 molecule corresponding to different inter-
atomic separations obtained using the KS SCE, LDA, and CI approaches.

Fig. 6 Hartree-exchange–correlation potentials from KS SCE, from exact
KS (by inversion of full CI densities) and from KS LDA for different
interatomic separations RH–H of the 1D H2 molecule.
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It also seems clear that the accuracy of SCE is somewhat
complementary to the ones of standard functionals, so that
corrections to SCE either including exact exchange (like the
simple one presented here), or based on standard approxima-
tions can be pursued in the future. In general, given an
approximate exchange–correlation functional E approx

xc [r] it is
possible to extract from it a correction to KS SCE by using the
scaling properties38,39 of DFT. By defining, for electrons in D
dimensions, a scaled density rg(r) & gDr(gr) with g 4 0, we
have39

Tc½r% þ Vd
ee½r% + Eapprox

xc ½r% ( lim
g!0

1

g
Eapprox
xc ½rg%: (40)

This way of constructing corrections to KS SCE has been tested
by using the LDA functional in ref. 15 for quantum wires and very
recently in ref. 40 for the anions of the He isoelectronic series.
While in the former case they gave very disappointing results, in the
latter they improved the results considerably, showing that for
chemical problems this could be a good way to proceed.
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