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The performance of functionals based on the idea of interpolating between the weak- and the
strong-interaction limits the global adiabatic-connection integrand is carefully studied for the chal-
lenging case of noble-metal clusters. Different interpolation formulas are considered and various
features of this approach are analyzed. It is found that these functionals, when used as a correla-
tion correction to Hartree-Fock, are quite robust for the description of atomization energies, while
performing less well for ionization potentials. Future directions that can be envisaged from this
study and a previous one on main group chemistry are discussed. Published by AIP Publishing.
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l. INTRODUCTION AND THEORETICAL
BACKGROUND

Noble metal clusters, in particular, those made of silver
and gold, are of high interest for different areas of materi-
als science and chemistry as well as for technological appli-
cations.!? Noble metals clusters display, in fact, peculiar
properties that differ from those of the bulk materials, due
to the higher reactivity of the surface atoms. Moreover, these
properties can be often tuned by varying the size and shape
of the clusters.>!0:13.15.23-28 Eor these reasons, the study of
the electronic properties of metal clusters is currently a very
active research field,>3° with many available experimental
techniques.40‘47 Nonetheless, in most cases, information from
theoretical calculations is fundamental to provide a better
understanding of the results and to aid the correct interpretation
of the experimental data,>?-30:39:48-52

Computational studies of noble metal clusters are, how-
ever, not straightforward™ because of the small single-particle
energy gap, implying a possible multi-reference character
of the electronic states, and due to the complex correlation
effects characterizing such systems. For these reasons, in
principle, an accurate description of the electronic structure
can only be achieved by high-level correlated multi-reference
approaches.*> However, these methods are hardly applica-
ble for the study of clusters, due to the very high computa-
tional cost. On the other hand, “conventional” single-reference
wave-function methods [e.g., Mgller-Plesset (MP) perturba-
tion theory,”®> configuration interaction,>®> or coupled clus-
ter®>®1] often display important basis set and/or truncation
errors, even for relatively small cluster sizes, which prevent
the achievement of accurate, reliable results. Thus, one of the
most used computational tools to study noble metal clusters is
Kohn-Sham density-functional theory (DFT).0>-64
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DFT calculations on noble metal clusters are often per-
formed using a semilocal approximation for the exchange-
correlation (XC) functional, e.g., the generalized gradient
approximation (GGA)® or the meta-GGAs.% This is an effi-
cient approach,?>-26:33.35.37.38:48.49.67-69 ¢ in various cases, it
has also shown limited accuracy, especially in the not so rare
case when it is necessary to discriminate between isomers with
rather similar energies (for example, in the prediction of the
two- to three-dimensional crossover in gold and silver clus-
ters>®%). However, unlike in the case of main group molecular
calculations, the use of hybrid functionals, which include a
fraction of exact exchange, is not able to provide a system-
atic improvement. Instead, it often leads to a worsening of the
results.?®%° The origin of this problem possibly traces back
to the too simplistic idea of mixing a fixed fraction of exact
exchange with a semilocal approximation.

In the hybrid wavefunction-DFT formalism, a certain frac-
tion a of the electron-electron interaction is treated within a
wave function method, while the remaining energy is captured
with a semilocal functional. In a compact notation,”® this can
be written as

Eo = min {(¥IT +a Ve + Ve ¥) + Efy vl } . (D)

where the complementary Hartree-exchange-correlation func-
tional E]‘;IXC depends on ¥ only through its densitzl py. In
Eq. (1), T is the electronic kinetic energy operator, V,, is the
electron-electron repulsion operator and V. is the external
potential due to the nuclei. The standard hybrid and double-
hybrid functionals of KS DFT can be seen as different approxi-
mations for the wavefunction ¥ appearing in Eq. (1): when the
minimization over ¥ is restricted to single Slater determinants,
we obtain the usual hybrid functional scheme, which mixes a
fraction a of Hartree-Fock (HF) exchange with a semilocal

Published by AIP Publishing.
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functional. If on top of that we use second-order perturbation
theory, we obtain single-parameter double-hybrid functionals,
as shown in Ref. 70.

The XC part E,.[p] of Eﬁxc that needs to be approx-
imated in the standard hybrid functionals formalism is

usually modeled starting from the adiabatic connection
formula’'-7#

1
Exlp] = /0 Walplda, @)

where A is the interaction strength and W;[p] =
Malpell V.. |Walpl) — Ul p] is the density-fixed linear adiabatic
connection integrand, with ¥ ,[p] being the wave function
that minimizes 7' + AV,, while yielding the density p, and
Ul p] being the Hartree energy. Most hybrid functionals then
employ a simple ansatz for the density-fixed linear adiabatic
connection integrand, for example,’>74

Walpl = W lp] + (Ec - EX™) (1= 0", (3)

where DFA denotes a density functional approximation (i.e., a
semilocal functional), E, denotes the Hartree-Fock exchange
functional, and n is a parameter. Substituting Eq. (3) into
Eq. (2) yields the usual linear mixing between the exact
exchange and the density functional approximation with
a = 1/n. However, Eq. (3) is a quite arbitrary expression for
W . It only satisfies the constraint that Wy = E, but for 4 # 0,
it incorporates no exact information and it is not even recov-
ering the correct weak-interaction limit behavior. Thus, most
of the accuracy of hybrids relies on the empiricism included
into the parameter n and the DFA. This seems to work well for
main-group molecular systems but not for other systems such
as metal clusters considered here.

A possible non-empirical route that allows us to overcome
the limitations of a fixed mixing parameter is the original idea
of Seidl and co-workers’3~"7 to build a model for the adiabatic-
connection integrand of Eq. (2) by interpolating between the

known weak- and strong-coupling limits,”%
Wasolpl = Wolpl + AWg[pl + -+, “
Wilpl
W—)oo[p]=W00[p]+—+"', (5)
! VI
where
Wolpl = Exlp] . (6)
Wolpl = 2EC p] , (7)

with ESL? being the second-order Gérling-Levy (GL) cor-
relation energy,’® whereas Wo,[p] is the indirect part of the
minimum expectation value of the electron-electron repulsion
in a given density,®*3! and W/ [p] is the potential energy of
coupled zero-point oscillations.”®-%" The idea is that by using
a function of A able to link the result from perturbation the-
ory with the 4 — oo expansion of W [p], an approximate
resummation of the perturbative series is obtained.”®

The exact W[ p] and W/ [ p] are highly nonlocal density
functionals’-8! that were approximated in the original work
of Seidl and co-workers’®’” by the semilocal point-charge-
plus-continuum (PC) model (see the Appendix). As a result, a
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series of XC functionals can be derived depending on the cho-
sen interpolating function and on whether the 4 — oo expan-
sion includes or not the order 1/v/1: Interaction Strength Inter-
polation (IST)7>~7782 and Revised ISI (revISI)’® also include
W’ [p], while Seidl-Perdew-Levy (SPL)** and Liu-Burke
(LB)%* only include W[ p]. They are briefly described in the
Appendix. These functionals, which are all based on an adia-
batic connection integrand interpolation (ACII), will be gen-
erally referred to as ACII functionals. They are non-empirical
in the sense that they are approximate perturbation-theory
resummations, include full exact exchange, and describe cor-
rectly correlation in the weak-interaction limit. Therefore,
they are well-suited to try to overcome the limitations of
semilocal and hybrid DFT approaches. Their most severe
problem could be the lack of size consistency for species
made of different atoms, an error that is absent in the case of
homogeneous clusters. Moreover, the size consistency issue
is actually quite subtle®>%® and can be corrected in many
cases.

The ACII functionals have been rarely tested on sys-
tems of interest for practical applications, with the exception
of a recent assessment of the ISI functional for main-group
chemistry.8? This investigation has revealed interesting fea-
tures of this functional and suggested possibilities for future
applications.

In this paper, we move away from main group chem-
istry to assess different ACII functionals for the description
of the electronic properties of noble metal clusters, made up
of gold and silver. As we have mentioned above, these are very
important systems for materials science and chemical appli-
cations but their proper computational description is still a
challenge. Thus, the testing of high-level DFT methods for this
class of systems has a great practical interest. Moreover, the
application of non-empirical XC functionals, constructed on a
well-defined theoretical framework, to the challenging prob-
lem of the simulation of electronic properties of noble metal
clusters can help us to highlight new properties and limita-
tions of such approaches. In fact, the next step forward could
be to model the adiabatic connection integrand locally®’-%°
by interpolating between the exact exchange energy density
and the 1 — oo one, for which exact results’® and approxi-
mations compatible with the exact exchange energy density
have been recently designed.”’~** In order to be compatible
with the exact exchange energy density, these approximations
are non-local and thus more expensive than the semilocal PC
functionals (which suffer from the usual gauge problem that
arises when we want to combine semilocal functionals with
the exact exchange energy density and thus cannot be used in
this framework). It has been found that the local interpolations
are in general more accurate than their global counterpart.®’
Thus, the study carried out here provides also a very useful
first idea of what could be achieved with these higher-level
approaches.

Il. COMPUTATIONAL DETAILS

In this work, we have tested four ACII XC function-
als, which are based on an interpolation of the density-fixed
linear adiabatic connection integrand, namely, ISI,’>~77:82



134106-3 Giarrusso et al.

revISI,”® SPL,®} and LB% (see the Appendix for details).
Additionally, for comparison, we have included results from
the Perdew-Burke-Ernzerhof (PBE)** and the PBE073%° func-
tionals, which are among the most used semilocal and hybrid
functionals, respectively, as well as from the B2PLYP double
hybrid functional,”® which also includes a fraction of second-
order Mgller-Plesset correlation energy (MP2). We have also
considered a comparison with the second-, third-, and fourth-
order Mgller-Plesset perturbation theory (MP2, MP3, MP4)>¢
results. This is because, as explained, the ACII functionals can
be seen as an approximate resummation of perturbation the-
ory so that it is interesting to compare them with the first few
lower orders. The reference results used in the assessment are
specified below for each test set considered:

e Small gold clusters. This set consists of the Auy, Au,
Aus, Augr, Auj, and Auy clusters. For all these sys-
tems, we have calculated the atomization energies; for
the anions as well as for Auz we have computed the
ionization potential (IP) energies. The geometries of all
clusters have been taken from Ref. 33; they are shown
in Fig. 1. Reference energies have been calculated at the
coupled cluster singles doubles and perturbative triples
[CCSD(T)] level of theory.?”-100

o Smallssilver clusters. This set includes Agy, Ag;', Ag,
Ags, Agl, Agy, and Agy. As for the small gold clus-
ters case, we have computed the atomization energies
of all the silver clusters and the IP of the anions as well
as of Ags. The geometries of all systems have been
taken from Ref. 38; they are shown in Fig. 1. Refer-
ence values for the energies have been obtained from
CCSD(T)”7-1% calculations.

e Binary gold-silver clusters. This set considers the
AuAg, AuAg™, AuAg, AupAgT, AuAg,, and AuAg,
clusters. Atomization energies have been calculated
for all system, while IPs have been computed for the
anions. Note that for the anions, we considered as atom-
ization energy the average with respect to the two pos-
sible dissociation channels, that is, AuAg™ — Au+Ag~
and AuAg- — Au +Ag; AuyAg™ —Auy+ Ag™ and
AwAg™ — Au, + Ag; AuAg, — Au + Ag; and
AuAg, — Au” + Ag;. The geometries of the binary
clusters have been obtained considering the structures
reported in Ref. 101 (see Fig. 1) and optimizing them
at the revTPSS/def2-QZVP level of theory.!"%193 For
these systems, in fact no high-level or experimental
geometries are available, except for AuAg. The bond
length of the latter (2.496 A)'** has been found to be
well reproduced by revTPSS/def2-QZVP calculations
(2.500 A). This approach has then been applied to opti-
mize all the binary clusters. Reference energies have
been calculated at the CCSD(T) level of theory.?’~10

e Gold 2D-3D crossover. This set includes the Au|,
Auj,, and Aup; clusters that are involved in the two-
to three-dimensional crossover of gold clusters. The
geometries of all systems have been taken from Ref. 50
and are shown in Fig. 2.

e Silver 2D-3D crossover. This set consists of the Ag;',
Agg, and Agj clusters, which are relevant to study

J. Chem. Phys. 148, 134106 (2018)

Au, Au _i
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°=:O:=°

AuAg
2
FIG. 1. Structures of the small gold, silver, and binary gold-silver clusters.

the two- to three-dimensional crossover of silver clus-
ters. Geometries have been obtained optimizing at the
revTPSS/def2-QZVP level of theory,'9%193 the lowest
lying structures reported in Ref. 38. The structures are
reported in Fig. 2.

Because accurate experimental data are not available for
all the systems, our assessment of the performances of the ACII
functionals on small clusters is carried out w.r.t. CCSD(T)
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FIG. 2. Structures of the gold and silver clusters considered for the 2D-3D
dimensional crossover problem.

values. This allows a more direct and sensible comparison
of the results, whereas the comparison with experimental
data would require the consideration of further effects such
as thermal/vibronic ones as well as spin-orbit coupling.33°
Of course, CCSD(T) results cannot generally be considered
“exact” for metal clusters. Nevertheless, for very small clus-
ters, as those considered in our study, CCSD(T) is usually
considered a reliable reference.32-33:38:67.69.105-110 1 deed, in
all our CCSD(T) calculations, the value of the D; diagnos-
tic, 111112 designed to measure the multi-reference character
of the CCSD ground state, was always smaller than 0.1. Sim-
ilarly, the percentage variation of the total interaction energy
due to the inclusion of perturbative triples (% TAE),!'* which
is an indicator for both multi-reference and truncation error
limitations, was always lower than or equal to 10%. Both val-
ues are therefore within the values considered acceptable for
CCSD(T) (D; =~ 0.15 and %TAE ~ 10).!'3 Finally, for the
energy differences considered in this paper, we could estimate
the employed basis set (aug-cc-pwCVQZ-PP, see below) to be
converged below 0.05 eV. Thus, we can expect no significant
problem in evaluating interaction energies with our CCSD(T)
protocol.

Actually, an accurate comparison with available exper-
imental data from the literature shows that, for atoms
(regarding ionization energies)''*!!> and neutral dimers and
trimers (regarding both ionization and atomization ener-
gies),! 16118 our CCSD(T) results are within 0.04 eV from the
experimental ones; for the charged dimers and trimers

J. Chem. Phys. 148, 134106 (2018)

(regarding both ionization and atomization energies), our
CCSD(T) results are within 0.2 eV from experimental
data.!!>11%120 Thus, the agreement is very good for neutral
clusters/atoms and reasonable for charged species. We note
that this larger discrepancy may be partly ascribable to a dimin-
ished accuracy of the CCSD(T) calculation per se in these
cases, but it may also be possibly due to the rather large error
bars associated with the measures on the experimental side and
on the increased importance of correcting terms on the com-
putational side. This shows, in conclusion, that no significant
truncation and/or basis set errors are present and our reference
CCSD(T) data are sufficiently converged for the purpose of this
study.

Concerning the 2D-3D crossover of both gold and sil-
ver clusters, no exact experimental energies are available for
a quantitative comparison. Moreover, for these systems, we
could not afford accurate CCSD(T) calculations (whose accu-
racy, for such relatively large clusters, would also be uncer-
tain). Therefore, for these cases, we do not provide reference
values and we consider only a qualitative analysis. Neverthe-
less, in order to provide some quantitative indication of the per-
formance of the functionals, we report for the 2D-3D crossover
the results of meta-GGA DFT calculations performed with the
balanced localization (BLOC) functional.!21-123 Recent stud-
ies have indeed shown that this is a quite accurate approach for
this problem.'?! We remark anyway that these results cannot
be considered accurate benchmarks but should be rather used
as a comparison with a reasonably accurate computational
approach.

All the required calculations have been performed with
the TURBOMOLE program package,'**!?> employing, unless
otherwise stated, the aug-cc-pwCVQZ-PP basis set'?0 and
a Stuttgart-Koeln MCDHF 60-electron effective core poten-
tial.'?” The calculations concerning the ISI, revISI, SPL, and
LB functionals have been performed in a post-self-consistent-
field (post-SCF) fashion, using Hartree-Fock orbitals. This
computational scheme is discussed in details in Ref. 82. In par-
ticular, our choice is motivated by the empirical observation
that the ISI functional yields much better results when used as
a correlation correction for the HF energy. The PBE and PBEO
calculations have been performed using a full SCF procedure;
B2PLYP calculations have been carried out as described in
Ref. 96, considering a SCF treatment of the exchange and
semilocal correlation part and adding the second-order MP2
correlation fraction as a post-SCF correction.

lll. RESULTS

In this section, we analyze the performance of the ACII
XC functionals for the description of the electronic properties
of gold, silver, and mixed Au/Ag clusters. The results are com-
pared to those obtained from other approaches, such as semilo-
cal and hybrid DFT as well as wave-function perturbation
theory.

A. Total energies

To start our investigation, we consider, in Table I, the
errors on total energies computed with different methods
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TABLE 1. Errors on total energies (eV/atom) of small gold, silver, and binary clusters. For each set of clusters,
the mean absolute error (MAE) is reported. In the bottom part of the table, we report also the statistics for the
overall set [mean error (ME), MAE, and standard deviation].

PBE PBEO B2PLYP IST revISIT SPL LB MP2 MP3 MP4
Au -4.93 -3.75 -1.73 2.84 2.93 2.65 1.97 -0.33 0.98 -0.27
Au+ —4.58 -3.73 -1.64 2.63 2.70 2.50 1.89 —-0.10 0.68 -0.15
Au- —4.94 -3.47 -1.65 3.26 3.38 3.02 2.25 —-0.35 1.44 -0.41
Au2 -4.96 -3.66 -1.69 2.89 2.99 2.67 1.94 -0.53 1.22 -0.43
Au2— -4.97 -3.58 -1.66 3.06 3.17 2.83 2.08 -0.46 1.40 -0.44
Au3 —4.97 -3.65 -1.67 2.89 3.00 2.67 1.94 -0.54 1.29 -0.48
Au3+ -4.90 -3.68 -1.66 2.80 2.90 2.59 1.88 -0.50 1.15 -0.43
Au3— —4.94 -3.54 -1.66 2.98 3.10 2.73 1.96 —-0.65 1.40 -0.55
Aud -4.96 -3.62 -1.67 2.86 297 2.63 1.87 -0.66 1.33 -0.54
ME -491 -3.63 -1.67 291 3.01 2.70 1.97 -0.46 1.21 -0.41
MAE 491 3.63 1.67 291 3.01 2.70 1.97 0.46 1.21 0.41
Ag -0.89 —-0.36 0.21 3.24 3.39 291 2.18 -0.26 1.04 -0.27
Ag+ -0.44 -0.25 0.38 2.99 3.13 2.71 2.04 -0.19 0.76 -0.20
Ag- -0.99 -0.21 0.24 3.68 3.85 3.31 2.53 —-0.08 1.39 -0.32
Ag2 -0.96 -0.30 0.22 3.32 3.49 2.97 2.19 -0.37 1.18 —-0.38
Ag2+ -0.79 -0.34 0.28 3.14 3.28 2.82 2.11 -0.26 0.95 -0.27
Ag2— -1.00 -0.27 0.24 3.50 3.67 3.14 2.37 -0.22 1.34 -0.33
Ag3 —-0.95 -0.30 0.25 3.32 3.49 2.96 2.19 -0.39 1.23 —-0.40
Ag3+ -0.85 -0.30 0.27 3.21 3.37 2.86 2.11 -0.41 1.10 -0.38
Ag3— -0.97 -0.23 0.25 345 3.63 3.07 2.27 -0.38 1.32 -0.43
Agd —-0.95 -0.27 0.24 3.29 347 291 2.12 -0.51 1.24 -0.45
ME -0.88 —-0.28 0.26 3.31 3.48 2.97 2.21 -0.31 1.15 -0.34
MAE 0.88 0.28 0.26 3.31 348 2.97 2.21 0.31 1.15 0.34
AuAg -2.93 -1.95 -0.72 3.10 3.24 2.81 2.06 -0.47 1.20 -0.41
AuAg— -2.97 -1.91 -0.70 3.27 341 2.97 2.20 -0.37 1.36 -0.39
AupAg -3.58 -2.49 -1.00 3.03 3.16 2.76 2.01 -0.51 1.28 -0.46
Aup,Ag™ -3.57 -2.40 -1.00 3.14 3.28 2.84 2.06 -0.57 1.36 -0.50
AuAg; -2.26 -1.38 -0.37 3.18 3.33 2.86 2.10 -0.46 1.26 —-0.43
AuAgy -2.32 -1.34 -0.40 3.30 3.46 2.96 2.18 -0.46 1.36 -0.47
ME -2.94 -1.91 -0.70 3.17 3.31 2.87 2.10 -0.47 1.30 -0.44
MAE 2.94 1.91 0.70 3.17 3.31 2.87 2.10 0.47 1.30 0.44

Overall statistics

ME -2.82 —-1.88 —-0.66 3.13 3.27 2.85 2.10 -0.40 1.21 -0.39
MAE 2.82 1.88 0.87 3.13 3.27 2.85 2.10 0.40 1.21 0.39
Std. dev. 1.81 1.51 0.87 0.24 0.27 0.18 0.16 0.15 0.20 0.10

with respect to the CCSD(T) reference values. Although this
quantity is usually not of much interest in practical appli-
cations (where energy differences are usually considered),
the analysis of the errors on total energies will be useful to
understand the performances of the different functionals for
more practical properties such as atomization or ionization
energies.

Inspection of the data shows that the ACII functionals
do not perform very well for the total energy. In fact, they
yield the highest mean absolute errors (MAEs), being even
slightly worse than the semilocal PBE approach and giving def-
initely larger errors with respect to perturbation theory (MP2,
MP3, and MP4) and to the double hybrid B2PLYP functional.
Among the ACII functionals, the SPL and especially the LB
approach perform systematically better than ISI and revISIL.
Thus LB yields errors that are often 30% smaller than ISI,
even though they are still usually larger than those of the other

non-ACII methods. On the other hand, considering the stan-
dard deviation of the errors (last line of Table I), we note that
the ACII results display a quite small dispersion around the
average (with LB and SPL again slightly better than ISI and
revISI). This is related to the fact that the ACII functionals all
give a quite systematic underestimation (in magnitude) of the
energy of all systems. By contrast, PBE, PBEO, and partly
B2PLYP give larger values of the standard deviation. This
depends on the fact that these methods describe quite accu-
rately some systems (e.g., Ag clusters), which are the ones
that effectively contribute to produce a quite low MAE, but
they give significantly larger errors for other systems. This
behavior is a signature of the too simplistic nature of these
functionals, which cannot capture equally well the physics of
all systems.

The observed standard deviations suggest that when
energy differences are considered, the ACII functionals can
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benefit from a cancellation of the systematic error such that
rather accurate energy differences can be obtained. We must
remark also that the standard deviation values reported in
Table I allow only a partial understanding of the problem
because they are obtained from all the data but, depending on
the property of interest, some energy differences may be more
relevant than others, e.g., for atomization energies, the differ-
ence between a cluster energy and the energy of the composing
atoms is the most relevant. Thus, for example, MP methods all
yield quite low standard deviations, but a closer look at the
results shows that the errors for atoms are quite different than
those for the clusters (much more different than for ACII meth-
ods); hence, we can expect that despite a quite good MAE and
a small standard deviation, MP2, MP3, and MP4 atomization
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energies can display a limited accuracy. A more detailed anal-
ysis of the relationship between the data reported in Table I
and some relevant energy difference properties will be given
in Sec. IV.

B. Atomization and ionization energies

A first example of an important energy difference is the
atomization energy. The atomization energy values calculated
for the sets of gold, silver, and binary clusters with all the meth-
ods are reported in Table II. Observing the data, it appears that
as anticipated, for atomization energies, the ACII functionals
work fairly well. In particular, SPL and LB yield mean abso-
lute relative errors (MARESs) of about 2%-3% for all kinds

TABLE II. Atomization energies (eV) of small gold, silver, and binary clusters. Note that for anionic binary
clusters, the average between the two possible dissociation paths has been considered (see Sec. II). For each set
of clusters, the mean error (ME), the mean absolute error (MAE), the mean absolute relative error (MARE), and
the standard deviation are reported. In the bottom part of the table, we report also the statistics for the overall

set.

PBE PBEO B2PLYP ISIT revISI SPL LB MP2 MP3 MP4 CCSD(T)

Auy 2.33 2.08 2.20 2.17 2.14 224 233 2.67 1.79  2.60 2.27
Auy 1.97 1.83 1.83 1.86 1.84 190 195 214 1.51  2.09 1.89
Aus 3.57 3.14 3.26 3.28 3.23 339 354 4.08 2.51 4.07 345
Au;r 6.06 5.60 5.67 5.71 5.66 5.82 597 6.54 498 6.38 5.79
Auy 4.90 4.52 473 4.87 4.81 5.00 5.17 5.80 4.05 5.57 4.87
Auy 6.18 5.51 5.81 5.95 5.85 6.14 640 7.37 4.60 7.10 6.03
ME 0.12  -0.27 -0.14 -0.08 —0.13 0.03 0.18 071 -0.81 0.58

MAE 0.12 0.27 0.14 0.08 0.13 0.06 0.18 0.71 0.81 0.58

MARE (%) 3 7 3 2 4 1 4 17 21 14

Std. dev. 0.08 0.16 0.06 0.06 0.07 0.08 0.13 0.39 0.37 0.30

Agy 1.82 1.59 1.69 1.53 1.50 1.59 1.66 1.93 141 191 1.70
Ag;r 1.85 1.69 1.64 1.58 1.57 1.59 1.61 1.70 1.51  1.67 1.62
Agy 1.53 1.39 1.37 1.32 1.31 1.35 138 1.51 1.15 148 1.41
Ags 2.73 2.37 2.45 2.31 2.27 241 252 294 2.00 294 2.56
Aggr 4.84 4.45 4.50 4.36 4.32 447 459 5.03 4.05 490 4.52
Agy 3.70 3.32 3.49 3.38 3.32 350 3.63 4.12 3.06 4.01 3.57
Agy 4.80 4.24 4.47 4.39 4.30 458 4.80 5.59 378 5.28 4.59
ME 0.19 -0.13 -0.05 -0.16 -0.20 -0.07 0.03 041 -043 0.32

MAE 0.19 0.15 0.06 0.16 0.20 0.07 0.06 041 043 032

MARE (%) 7 5 2 6 7 3 2 13 15 10

Std. dev. 0.07 0.14 0.06 0.07 0.09 0.05 0.09 0.32 0.23 022

AuAg 2.22 1.97 2.11 2.05 2.02 2.13 221 2.53 1.80 2.46 2.18
AuAg 1.83 1.69 1.71 1.74 1.72 1.78 1.83 2.00 147 192 1.77
AuAg 3.65 3.26 342 347 341 359 373 428 2.80 422 3.65
AuyAg™ 4.96 4.58 4.84 4.97 491 5.12 528 5.90 436 5.63 5.04
AuAg) 3.33 2.94 3.08 3.06 3.00 3.17 330 3.80 2.56  3.75 3.28
AuAgy 3.83 3.40 3.58 3.48 342 3.60 3.74 425 3.00 4.14 3.63
ME 0.04 -0.29 -0.14 -0.13 -0.18 -0.03 0.09 053 -0.60 043

MAE 0.07 0.29 0.14 0.13 0.18 0.06 0.09 0.53 0.60 043

MARE (%) 2 9 4 4 6 2 3 16 19 13

Std. dev. 0.09 0.14 0.08 0.07 0.08 0.06 0.08 0.23 0.21 0.18

Overall statistics

ME 0.12 -0.22 -0.11 -0.12 -0.17 -0.02 0.10 0.54 -0.60 0.44

MAE 0.13 0.23 0.11 0.12 0.17 0.06 0.11 0.54 0.60 0.44

MARE (%) 4 7 3 4 6 2 3 15 18 12

Std. dev. 0.10 0.16 0.08 0.07 0.08 0.07 0.11 0.33 0.31 0.25
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of clusters, being competitive with the B2PLYP functional.
The ISI and revISI functionals perform slightly worse, dis-
playing a systematic underbinding and giving overall MAREs
of 4% and 6%, respectively. Moreover, unlike for SPL and LB,
non-negligible differences exist in the description of the dif-
ferent materials with gold clusters described better than silver
ones. Overall the ISI and revISI functionals show a compa-
rable performance as PBE and better than PBEO. Finally, the
MP results show a quite poor performance, exhibiting MAREs
ranging form 10% to 20%. In addition, we can note that MP2
results are closer to MP4 results than MP3 ones not only
from a quantitative point of view but also qualitatively (MP2
and MP4 always overbind, while MP3 always consistently
underbinds). This is a clear indication of the difficult conver-
gence of the perturbative series for the metal clusters electronic
properties.

In Table III, we report the computed ionization poten-
tial energies, which are other important energy differences to
consider for metal clusters. In this case, the ACII functionals
perform rather poorly, being the worst methods, if we exclude
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MP3. As in the case of atomization energies, SPL and LB
(especially the latter) show a slightly better performance than
ISI and revISI. Nevertheless, the results are definitely worse
than for B2PLYP, PBE, and even PBEOQ. A rationalization of
this failure will be given is Sec. IV.

C. 2D-3D crossover

To conclude this section, we consider the problem of
the two- to three-dimensional (2D-3D) crossover of anionic
gold clusters and cationic silver clusters. Different studies
have indicated that for anionic gold clusters, the dimensional
crossover occurs between Auj; (2D) and Au, (3D), with the
2D and 3D Auj, structures being almost isoenergetic.*>
On the other hand, for cationic silver clusters, it has been
suggested that the dimensional transition occurs already for
AgZ, which has a 2D structure with a slightly lower energy
than the 3D one, while Ag{ and Ag; display lowest energy
3D structures.’®!?® Anyway, this is a quite difficult problem
because experimentally it is not trivial to distinguish clusters

TABLE III. Ionization potentials (eV) of small gold, silver, and binary clusters. For each set of clusters, the mean
error (ME), the mean absolute error (MAE), the mean absolute relative error (MARE), and the standard deviation
are reported. In the bottom part of the table, we report also the statistics for the overall set.

PBE PBEO B2PLYP ISI  revISI SPL LB MP2 MP3 MP4 CCSD(T)

Au 9.54 9.22 9.29 9.00 8.97 9.05 9.13 942 891 9.32 9.20
Au~ 2.30 2.00 2.21 1.86 1.84 1.92 2.01 2.31 1.82 242 2.29
Auy 1.94 1.75 1.84 1.56 1.55 1.58 1.62 1.78 1.53 191 1.91
Aus 7.05 6.76 6.89 6.57 6.55 6.62 6.69 697 644 7.01 6.86
Auj 3.63 3.38 3.67 345 341 3.53 3.63 4.03 336 392 3.70
ME 0.10 -0.17 -0.01 -0.30 -0.33 -0.25 -0.17 0.11 -0.38 0.12

MAE 0.13 0.18 0.06 0.30 0.33 025 0.17 0.6 038 0.12

MARE (%) 2 6 2 10 11 9 6 4 12 3

Std. dev. 0.17 0.14 0.07 0.08 0.08 0.09 0.11 0.18 0.07 0.08

Ag 8.04 7.70 7.76 7.35 7.33 740 745 7.67 731 7.66 7.59
Ag” 1.40 1.15 1.28 0.86 0.85 0.90  0.95 1.13 095 1.35 1.31
Agy 8.02 7.60 7.80 7.30 7.26 740 750 790 721 7.90 7.68
Agy 1.11 0.96 0.97 0.66 0.65 0.66 0.67 072 0.69 0.92 1.01
Ags 5.93 5.63 5.71 5.30 5.28 534 539 558 526 5.70 5.64
Agy 2.38 2.10 2.32 1.93 1.90 1.99 206 231 2.02 242 2.31
ME 022 -0.06 0.05 -0.36 -0.38 -0.31 -0.25 -0.04 -0.35 0.07

MAE 0.22 0.10 0.07 0.36 0.38 0.31 025 0.14 035 0.10

MARE (%) 6 5 2 17 17 15 13 8 15 4

Std. dev. 0.16 0.11 0.08 0.07 0.07 0.07 0.09 0.18 0.07 0.10

AuAg™ 1.46 1.30 1.35 1.05 1.04 1.07 1.09 1.19 1.07 134 1.39
AuyAg™ 3.16 2.90 3.17 2.87 2.84 294  3.03 334 295 330 3.18
AuAgy 2.35 2.04 2.24 1.79 1.76 1.84 1.91 2.17 1.83 228 2.15
ME 0.09 -0.16 0.01 -0.34 -036 -029 -023 -0.01 -0.29 0.07

MAE 0.10 0.16 0.05 0.34 0.36 029 023 013 029 0.10

MARE (%) 5 7 3 17 18 15 12 7 15 4

Std. dev. 0.11 0.11 0.07 0.03 0.03 0.04 0.07 0.18 0.05 0.10

Overall statistics

ME 0.15 -0.12 0.02 -0.33 -0.36 -0.28 -022 0.02 -0.35 0.09

MAE 0.16 0.14 0.06 0.33 0.36 028 022 0.15 035 o0.11

MARE (%) 4 6 2 14 15 13 11 6 14 4

Std. dev. 0.16 0.12 0.08 0.07 0.07 0.07 0.09 0.18 0.07 0.09
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TABLE IV. Relative energies (eV) with respect to conformer I (see Sec. II) of 2D and 3D anionic gold clusters
and cationic silver clusters. For the gold clusters, the data include the correction terms reported in Table IV of

Ref. 50.
PBE PBEO BLOC B2PLYP ISI revIST SPL LB MP2

Aup)-T 2D
Aup,-II 3D 0.217 0.224 0.206 0.147 0.083  0.090 0.070 0.054 —-0.006
Aup,-III - 3D 0.270 0.179 0.354 0.254 0.265  0.251 0.302 0.344 0.499
Aup,-T 3D
Aup,-II 2D  -0.450 -0.340 0.008 -0.144 0.710  0.669  0.789  0.882 1.228
Aup;-l 3D
Aup;-II 3D  -0.027 -0.032 0.037 -0.024 0497 0495 0499 0.527 0.618
Aup-IT 2D -0.111 0.056 0.386 0.248 0.802 0.894 0917 0.824 1.069
Agtl 3D
Ag;r—ll 2D 0.021 0.025 0.024 0.020 0.021 0.020 0.018 0.017 0.013
Agi-l 3D
Agg-H 2D -0.005 0.055 0.280 0.007 0220  0.211 0241  0.265 0.348
Agi-l 3D
Agt-I 2D -0.099 0.303 -0.059 0286  0.270  0.318  0.352 0.474

of the same size but different dimensionality. A computational
support is thus required.’*#3-5%-128.129 However, to describe
correctly the energy ordering of several noble metal clusters
with very similar energies is a hard task for any computational
method 330121130 Eor this reason, this is a very interesting
problem from the computational point of view.

In Table IV, we report the energies calculated for the
anionic gold clusters and cationic silver clusters relevant for
the 2D-3D transition. Because no reliable benchmark values
can be obtained for these clusters, the table does not report
any reference values. Anyway, to provide some comparison,
we have listed the results obtained with the BLOC meta-GGA
functional,'>!~1?3 which is expected to be a quite accurate
approach for this kind of problems.'?! Observing the data, one
can immediately note that the PBE, PBEO, and even B2PLYP
methods are not reliable for the dimensional crossover of
noble metal clusters. In fact, PBE always favors 2D structures,
whereas PBEO predicts the 2D-3D transition at a too large
cluster dimension for gold, Auj; (although the 3D geome-
try with lowest energy is not the same as the one we find
with BLOC and all ACII functionals), and for silver, the ener-
gies of the 2D and 3D clusters differ slightly for both n = 6
and n = 7, not evidencing a clear transition at the expected
cluster size. A similar behavior is found for the B2PLYP
functional, which was instead one of the best for the atomiza-
tion energies and IPs of small clusters. The ACII functionals
overall perform all quite similarly, predicting for all clusters
the expected ordering and agreeing well with BLOC results
for the cationic Ag clusters but tending to favor 3D struc-
tures in the anionic Au clusters. We note that this behavior is
somehow inherited from the MP2 method, which however per-
forms much worse than any of the ACII functionals considered
here.

IV. DISCUSSION AND ANALYSIS OF THE RESULTS

In Sec. III B, we saw that the ACII functionals perform
rather well for the calculation of atomization energies of noble

metal clusters. As mentioned above, a good rationalization of
the observed results can be obtained in terms of the energy
errors that the different methods display for the total ener-
gies of atoms and of the clusters. These have been reported in
Table 1.

A. Energy differences

For a better visualization here, we additionally plot, in
Fig. 3, the quantity

SAE = AE(M,MM}) - Z AE(M,)

n
- Y AEM;) = ) AEM;), ®)
m l
where AE are the total energy errors (the AE per atom are
reported in Table I), M = Au or Ag, and n, m, [ are the integers
such that M,,M&Ml+ corresponds to a given cluster (e.g., for
Au} we have M = Au, n =2, m =0, and [ = 1). This quantity
provides a measure of how different is the energy error made on
a given cluster from that of its constituent atoms. Inspection of
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FIG. 3. Difference in the total energy error between a cluster and its
constituent atoms [see Eq. (8)].
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the plots shows that the smaller SAE values are yielded by the
ISI'and SPL (revISI and LB, not reported, give similar results).
These functionals are also among the best performers for the
atomization energies. On the other hand, for PBE we observe
that the 6AE is small for gold clusters, with the exception of
Auf, while for silver clusters it is larger. Indeed, looking to
Table II we can find that PBE performs well for gold clusters,
with the exception of Auj that yields an error of 0.27 eV (more
than twice larger than the MAE), while it performs less well
for silver clusters. Finally, for MP2 the values of SAE are
generally very large. Thus, despite MP2 is on average quite
accurate in the description of the total energies (see Table 1),
it fails to produce accurate atomization energies because of
accumulation of the errors.

A similar analysis can be made to comment the results
of the ionization potential calculations (reported in Table III).
However, in this case, the difference to consider is between the
neutral and the charged species. Then, a different behavior is
observed. In fact, while for most of the considered methods, the
total energy error is not much different between a neutral and
a charged species of the same cluster, for the ACII functionals
we always observe an increase of the error with the charge.
This situation is schematized in Fig. 4, where we plot, for
several examples, the quantity

A(g) = AE(A?) - AE(A%) ©))

with A being any of the systems under investigation and
qg = -1, 0, 1. The observed trend may trace back to a dif-
ferent ability of ACII functionals to describe the high- and
low-density regimes. As a consequence, the ACII function-
als are generally the worst performers for the calculation of
ionization potentials, while PBE and especially B2PLYP per-
form well thanks to the more homogenous description of the
differently charged species.

This analysis shows that although the quality of the total
energies produced by a functional is a key element to under-
stand the performance of the functional, the basic property to
observe is not the quality of the absolute energies, but rather the
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variance of the errors. Furthermore, the contrasting behaviors
we have observed for the description of the atomization ener-
gies and of the ionization potentials highlight the subtleties
inherent to such calculations. In particular, the accuracy of the
ACII functionals has been shown to be not much dependent
on the investigated material (Au or Ag) nor on the system’s
size but to be quite sensitive to the charge state of the com-
puted system. The first feature is a positive one. This is related,
as we saw, to the computation of atomization energies, but
even more importantly it indicates that the idea beyond the
construction of the ACII functionals is in general quite robust
such that the functionals although not very accurate in absolute
terms (see Table I) are well transferable to systems of different
size and composition. This is not a trivial results since, as we
documented, other methods (e.g., PBE and PBEOQ, but even
MP4) do not share this property. On the contrary, the depen-
dence of the ACII functionals on the charge state of the system
indicates a clear limitation of such approaches. They are in
fact unable to describe with similar accuracy systems with
qualitatively different charge distributions. As a consequence,
the ionization potential calculations are problematic for ACII
functionals.

B. AC curves: Gold dimer showcase

To rationalize the origin of the limitations of the ACII
functionals as well as to understand in depth the differences
and the similarities between the different interpolation formu-
las, it would be necessary to inspect in some detail the shape of
the density-fixed linear adiabatic connection integrand defin-
ing ISI, revISI, SPL, and LB. However, contrary to small atoms
and molecules (see, e.g., Refs. 131-133), for noble metal clus-
ters, there exists no reference adiabatic connection integrands
to compare to. Thus, such a detailed analysis is not really pos-
sible. Nevertheless, some useful hints can be obtained by a
semi-qualitative comparison of the various adiabatic connec-
tion curves. As an example, in Fig. 5 we report, for the Au, case
(the other systems studied here have very similar features), the
atomization adiabatic connection integrand, defined as

T T :
O -0 PBE
0.4 Au - A B2PLYP §=1
;‘ —o IsI R
02 +—o MP2
~
3 0.0mo o= NgZ 7T
5 0
<

FIG. 4. Variation of the energy error
with the total charge of the system
(Au top left, Auz bottom left, Ag top
right, Agz bottom right). The values are

AE(q) [eV]

scaled to the neutral system value [see
Eq. (9)]. Note that only the values g =

S
>
R

AE(q) [eV]
& & o
= & 3

—1, 0, +1 have been computed; these are
0.10 denoted by the symbols in the plot. The
straight lines connecting the symbols
have only a graphical purpose, to high-
light the trend. They do not represent the
behavior for fractional charges.
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FIG. 5. Atomization adiabatic connection integrands [see Eq. (10)] corre-
sponding to ISI, revISI, SPL, and LB for the Au, case; the thick curve in gray
corresponds to the linear expansion for the atomization adiabatic connection
integrand [Eq. (11)].

Wi (Aup) = Wi(Aup) — 2W,(Au) , (10)

for ISI, revISI, SPL, and LB. The integrated value (between
0 and 1) of this quantity corresponds to the XC atomiza-
tion energy calculated with a given ACII functional. Note that
because the ACII functionals are not size-consistent,3” slightly
different definitions of Eq. (10) could be given. Nevertheless,
using the procedure of Refs. 82 and 134, the size-inconsistency
error on atomization energies can be estimated to be less than
0.05 eV for all the cases considered in this work. Thus, we
expect no observable difference between different definitions
of W/‘{’ . For discussion, we have plotted also the weak inter-
acting limit expansion truncated at linear order in A for the
atomization adiabatic connection integrand, which is defined
as

W g(Au) = W) re(Aug) — 2W, 1£(Au), (11)

where the linear expansion (LE) of the AC integrand for a
species X is Ware(X) = Ex(X) + 2AESY2(X) in agreement
with Eq. (4) and in the case of HF orbitals ES“2(X) = EMP2(X).
Because of the weak-interacting limit constraint, all the curves
plotted in the figure share the same A = 0 value, which corre-
sponds to the Hartree-Fock exchange atomization energy, as
well as the same slope at this point. The curves remain very
similar up to 4 = 0.2, which is not strictly dictated by the weak-
interacting limit constraint but rather by a possible lack of
flexibility in the interpolation formulas. For values of 1 > 0.2,
the curves associated with the various functionals start to dif-
fer, due to the different ways they approach the W, value for
A = oo. Note that in this case, ISI and revISI are further con-
strained to recover the W/, slope, whereas SPL and LB do
not have this constraint. The interpolation towards the strong-
interaction limit is therefore the main feature differentiating
the various ACII functionals, even in the range 0 < A < 1.
In general, revISI is the slowest to approach the asymptotic
W value, whereas LB is the fastest. So the former will usu-
ally yield the smaller XC energies, whereas the latter will
produce the larger XC energies (in magnitude). In fact, turn-
ing to the Au, example reported in Fig. 5, the inspection
of the plot shows that revISI is indeed the slowest to move
towards the asymptotic W% value (for Au, W% = —0.239).
Consequently, in Table II it yields the smallest atomization
energy (it underestimates the Au, atomization energy by 0.13
eV). On the opposite, LB is the fastest to move towards
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the asymptotic W% value, thus it gives the larger atom-
ization energy (overestimating it by 0.06 eV). In this spe-
cific case, the SPL functional, which behaves almost inter-
mediately between revISI and LB, yields a very accurate
value of the atomization energy, underestimating it by only
0.03 eV.

Thus, we have seen that there are two main features that
can determine the performance of an ACII functional. The first
one is surely the behavior towards the strong-coupling limit,
which is able to influence the shape of the adiabatic connec-
tion integrand curve for A g 0.2/0.3. This behavior is indeed
modeled differently by the various functionals examined in
this work, but it appears that none of them can really cap-
ture the correct behavior in the range of interest 0.3 < A <
1. This is possibly due to the fact that information on the A
= oo point is not sufficient to guide correctly the interpola-
tion at the quite small A values of interest for the calculation
of XC energies. A second factor that is relevant for the func-
tionals’ performance is the small A behavior. At very small
A values, this is determined by Eq. (4), but for larger val-
ues of the coupling constant (at least for 0.1 < 1 < 0.2),
the shape of the curve should depart from the slope given
by ECGL2 in order to correctly describe the higher-order cor-
relation effect. Instead, we have observed that all the ACII
functionals provide the same behavior up to A =~ 0.2. This
indicates that the interpolation formulas have not enough flex-
ibility to differentiate from the asymptotic behavior imposed
at 41=0.

C. Role of the reference orbitals

The ACII functionals are orbital-dependent nonlinear
functionals; thus, they are usually employed to compute the
XC energy in a post-SCF fashion (as we did in this work).
Then, the results depend on the choice of the orbitals used for
the calculation. Recent work®” has evidenced that ISI results
for main-group chemistry are much improved when Hartree-
Fock orbitals are used. This has been basically traced back to
the characteristics of the Hartree-Fock single-particle energy
gap (which determines the magnitude of ES? and thus the
weak-interaction behavior of the curves).

For gold and silver clusters, after some test calculations,
we found a similar result for all the ACII formulas consid-
ered. For this reason, all the results reported in Sec. III are
based on Hartree-Fock orbitals. To clarify this aspect, we have
reported in Fig. 6 both the bare and the atomization adia-
batic connection integrands computed with the SPL formula
(similar results are obtained for the other formulas) for Au,
and Au using either Hartree-Fock and PBE orbitals. It can
be seen that the adiabatic connection curve of Au,, obtained
from Hartree-Fock orbitals, is very similar to twice the Au
curve. Hence, the atomization adiabatic connection integrand
is rather flat, yielding (correctly) a moderate atomization XC
energy. This behavior depends partly on the fact that in Hartree-
Fock calculations Au, has almost twice the exchange energy
of Au but, primarily, it traces back to the fact that the Au,
MP2 correlation energy is almost perfectly two times larger
than the Au one (which in turn depends on the fact that
the two systems have very close single-particle energy gaps
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FIG. 6. Top: Adiabatic connection integrands computed with the SPL for-
mula [Eq. (A8)] for Au, (solid line) and Au (dashed line) using Hartree-Fock
and PBE orbitals; the Au curve is multiplied by a factor of 2; the inset shows
the weak-interaction part of the curves. Bottom: Atomization adiabatic con-
nection integrands [see Eq. (10)] computed with the SPL formula for the Au,
case.

—7.604 eV and 7.707 eV, respectively—and on the size-
extensivity of the MP2 method). Thus, the adiabatic connec-
tion integrands for Au; and twice the Au have almost identical
slopes at 4 = 0 and similar behaviors for 4 < 1. Instead,
when PBE orbitals are used, larger differences between the
Au; and twice the Au curves can be noted. These originate
only partially from the fact that, in the case of PBE orbitals,
the exact exchange contributions of Au, and twice Au are not
much similar (they differ by 0.045 eV). Mostly they depend on
the rather different GL2 correlation energies for the systems
(ESY2(Aup) — 2E9*2(Au) = —0.173¢V), which in turn trace
back to the fact that the single particle energy gaps computed
for Au; and Au are very different: 2.014 eV and 0.718 eV,
respectively. Consequently, the atomization adiabatic connec-
tion integrand curve calculated with PBE orbitals is steeper
than the Hartree-Fock-based one and therefore it yields signif-
icantly larger atomization XC energies. This results in a strong
tendency of PBE-based ACII functionals to overbind the noble
metal clusters.

D. Further analysis of the ACII’s formulas

We have seen in Sec. III that SPL and LB formulas show
overall better performances than IST and revISI. As mentioned,
the main difference between the two groups is that the former
uses a three-parameters interpolation formula, while the latter
make use of a fourth ingredient from the 4 — oo limit, i.e., the
zero-point oscillation term W/ [p]. The revISI formula also
recovers the exact expansion at large A to higher orders.”
However, we have to keep in mind that the ingredients coming
from the strong interaction limit are not computed exactly but
approximated with the semilocal PC model. Comparison with
the exact W[ p] and W/, [ p] for light atoms’*3! suggests that
the PC approximation of the W[ p] term is more accurate than
the one for W/ [ p]. Moreover, the parameters appearing in the
PC model for W[ p] are all determined by the electrostatics of
the PC cell, while in the case of W[ p], the gradient expansion
does not give a physical result, and one of the parameters has
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to be fixed in other ways, for example, by making the model
exact for the He atom.”’

Another important point to consider is that, as explained
in Sec. IV C, we are using the ACII functionals with Hartree-
Fock orbitals, which means that they are used as a correlation
functional for the Hartree-Fock energy. In other words, the
ACII correlation functionals are used here as an approxi-
mate resummation of the Mgller-Plesset perturbation series:
they recover the exact MP2 at weak coupling and perform
much better than MP3 and MP4 for atomization energies (see
Table II). Thus, a first question that needs to be addressed is
whether the PC model used here to compute the infinite cou-
pling strength functionals is accurate also for the Hartree-Fock
adiabatic connection, in which the A-dependent hamiltonian
reads

[Afﬂ = T + \A/HF +A (‘A/ee - ‘A/HF)’ (12)

with Vi being the Hartree-Fock non local potential operator.
This adiabatic connection is different from the DFT one, as
the density is not fixed but changes with A; the HF correlation
energy is still given by a coupling-constant integration similar
to the one of Eq. (2), as reviewed, for example, in Ref. 135.
The perturbative expansion for small A of Eq. (12) defines
the MP series. When 1 — oo, the problem defined by H* of
Eq. (12) is also not the same as the one of the density-fixed
adiabatic connection arising in DFT, but still it is defined in
terms of the HF density. The results of this study suggest that
the PC model can provide a decent approximation of the lead-
ing 4 — oo term in the HF adiabatic connection integrand,
at least when dealing with isoelectronic energy differences.
A careful study of the problem is the object of on-going
work.

Keeping in mind that the information from W/ [p] is less
accurate (and maybe less relevant in the HF context), it can be
interesting to consider a variant of ISI and revISI, in which we
replace W/PC[p] with the curvature at 1 = 0 (obtained from
MP3) as an input ingredient. In this way, the modified AC
integrand expressions recover the first three terms of Eq. (4) for
small A, and only the first term of Eq. (5) for large 1. However,
the resulting XC approximations show several drawbacks. In
fact, the results for atomization energies are significantly worse
than for the original ISI and revISI functionals (the MAEs are
0.72 and 0.65 eV for Au clusters, 0.40 and 0.37 eV for Ag
clusters, and 0.55 and 0.51 eV for binary clusters), despite they
are close to the MP2 ones and better than the MP3 ones. More
importantly, the modified ISI and revISI formulas, with the
input ingredients for the Au and Ag clusters, result in adiabatic
connection integrands that become imaginary at some A > 1,
with revISI breaking down at much larger A values than ISI.
This fact might be ascribed to the oscillatory behavior of the
MP series, which gives a curvature that is too large, or to the
lack of flexibility of the revISI and ISI formulas. This is further
illustrated in the Appendix.

V. CONCLUSIONS AND PERSPECTIVES

We have assessed the performance of functionals based
on the idea of interpolating between the weak- and the
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strong-interaction limits, the global adiabatic-connection inte-
grand (ACII functionals), for noble-metal clusters, analyzing
and rationalizing different features of this approach. The study
presented here extends a previous preliminary assessment on
main group chemistry®? and explores different interpolation
formulas.

We have found that the ACII functionals, although not
spectacularly accurate, are quite robust for the description of
atomization energies, as their performance tends to be the same
for different species and different cluster sizes, which is a pos-
itive feature. We should also stress that this good performance
is achieved by using 100% of Hartree-Fock exchange and thus
avoiding to rely on error cancellation between exchange and
correlation. Rather, as clearly shown in Fig. 3, this is achieved
by performing in a very similar way for the description of a
cluster and its constituent atoms. On the other hand, the ACII
functionals are found to be inaccurate for ionization ener-
gies, as they are not capable to describe differently charged
states of the same system with the same accuracy, as shown
in Fig. 4.

As in the case of main-group chemistry,®> we have found
that the ACII functionals perform much better when used
with Hartree-Fock orbitals, which means that they are used
as a correlation functional for the Hartree-Fock energy. In
other words, the ACII correlation functionals are used here
as an approximate resummation of the Mgller-Plesset pertur-
bation series: they recover the exact MP2 at weak coupling
and perform much better than MP3 and MP4 for atomiza-
tion energies (see Table II). Thus, a first question that needs
to be addressed is whether the PC model used here to com-
pute the infinite coupling strength functionals is accurate also
for the Hartree-Fock adiabatic connection of Eq. (12), which
is the object of a current investigation. The results of this
study and of Ref. 82 suggest that the PC model can provide
a decent approximation of the 4 — oo HF adiabatic connec-
tion integrand, at least when dealing with isoelectronic energy
differences.

Another promising future direction is the development of
ACII functionals in which the interpolation is done in each
point of space, on energy densities.®’-%° These local interpola-
tions are more amenable to construct size-consistent approx-
imations but need energy densities all defined in the same
gauge (one of the electrostatic potentials of the exchange-
correlation hole seems so far to be the most suitable for
this purpose'3°). In this framework, the simple PC model,
which performs globally quite well, does not provide accu-
rate approximations pointwise®’ and needs to be replaced with
models based on integrals of the spherically averaged den-
sity,gl’g2 which, in turn, needs a careful implementation, which
is the focus of on-going efforts.”? Finally, recent models for A
=1 could be also used in this framework,”® both locally and
globally.
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APPENDIX: ADIABATIC CONNECTION INTEGRAND
INTERPOLATION FORMULAS

Several interpolation formulas have been developed to
recover the weak- and strong-coupling limit behaviors of
Egs. (4) and (5). For the sake of simplicity, we will not specify
in the following that the expressions of the AC integrand and of
the XC correlation energy are (explicit or implicit) functionals
of the density as well as each of their fundamental ingredients,
Wo, W(;, Wé’, Weo, and W/,.

Interaction Strength Interpolation (ISI) formula’>~77-82
X
WS = W + —n—, (A1)
4 Vi+AY +Z
with
2 2.2 2
x=2 y=20z=2 1, (A2)
Z b4 z
x==2W5, y=W,,z2=Wy—-Ws. (A3)
After integration in Eq. (2), it gives
2X Vi+Y+Z
ES o Wt 22 [VIH Y —1—zIn| 222220 (A
Y 1+Z7
Revised ISI (revISI) formula’®
b(2+cA+2dVT+ca)
WSt = W, + = (A5)
2VT+cd (d+VT+cd)
where
4W6(W<:o)2 2(W6W$o)2
= - N c = N
(Wo = Weo)? (Wo = Weo)*
AW (WL,)?
d=-1-—C2— (A6)
(WO - Woo)
The corresponding XC functional is
ES w2 (A7)
N Vi+c+d
Seidl-Perdew-Levy (SPL) formula®’
Wo — We
WP = W, + =2 (A8)
V1+24y
with
—W6 A9
X =W W (A9)
The SPL XC functional reads
VMI+2y—1-
E)?CPL =(Wo — W) R i’ S’ 4 +W. (A10)
X

Note that this functional does not make use on information on
wl.
Liu-Burke (LB) formula3*

WL = W, + By +yh, (A11)
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where
1 Wo — W 4w/
- , B= — L, y=—2_ (AL2)
JT+yad 2 5(Weo — Wo)
Using Eq. (2), the LB XC functional is found to be
1 1 2
ELB =2,8[—(\/1+c—+—c/)—1] . (A13)
Y l+c¢

Also the LB functional does not use information on WZ,.
Point-Charge-plus-continuum (PC) model

In all cases, the highly non-local functionals W, and
W/, (when used) are approximated by the semilocal PC

model’®
\vj 2
szng,cz/ Ap(r4/3)+3% dr, (Al4)
p(r)
\vj 2
W~ W.FC¢ =/[Cp(r3/2)+D% dr, (Al5)
p(r)7!

where A = -9(47/3)!/3/10, B = 3[3/(4)]"3/350, C = V3r/2,
D = —0.028 957; note that other slightly different values are
possible for the D parameter.””

1. ISl and revlSI with the exact curvature

The ISI and revISI formulas have four parameters that
need to be fixed by four equations. In the standard forms (see
above), the four equations are obtained by imposing that W'S!
recovers the first two terms of the weak-interacting limit expan-
sion, Eq. (4), and the first two terms in the strongly interacting
limit expansion, Eq. (5) for large A. For the first time, we have
explored an alternative choice that is to constrain ISI and revISI
to recover the first three terms of Eq. (4) for small A and only
the first term of Eq. (5).

The structure of the interpolation formula is thus formally
the same, but the parameters are given by

14

X = =2(Wp — Weo) + —2—(Wp — Weo)?,
(W))?
v 2W6’ 4w
= —2— 4+ —_—
Wy (W — W) (Al6)
Z =3+ —2(Wy— W),
(W,)?
for ISI, and
AW (Wy — Weo)?
b=-2Wy—Ws)+ M,
3>(W6)2
4w 2W]
c=- 3w, " o - W)’ (A17)
AW/ (Wy — We
d=-3+ M’
3(W6)2
for revISI.

However, as discussed in Sec. IV D, while in the standard
ISI and revISTinterpolation formulas, the parameters, Y[ p] and
c[p], which appear under square root, are given by the sum of
squared quantities [see Eqs. (A2) and (A6)]; in these modified
versions, this is not true and they can become negative. In
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the cases studied here, both parameters turn out to be always
negative and smaller than one, meaning that there is, for each
species, a critical lambda, A., always larger than one, after
which the function takes imaginary values. In particular, we
found an average A/ ~ 4 with values spanning from 2.5 to
5.7, and an average 175! ~ 180 with values spanning from
6 to over 3 X 10°. As a general trend, we thus see that the
modified revISI appears to be more robust than the modified
ISIin the sense that it becomes imaginary at significantly larger
A values.
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