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This article discusses some ideas concerning an ‘average-pair-density functional
theory’, in which the ground-state energy of a many-electron system is rewritten
as a functional of the spherically and system-averaged pair density. These ideas
are further clarified with simple physical examples. Then it is shown that the
proposed formalism can be combined with density functional theory to build
system-adapted correlation energy functionals. A simple approximation for the
unknown effective electron–electron interaction that enters in this combined
approach is described, and results for the He series and for the uniform
electron gas are briefly reviewed.

1. Introduction

Density Functional Theory (DFT) is nowadays the most widely used method for the

calculation of electronic structure in both solid-state physics and quantum chemistry

[1–3]. The accuracy of the results coming from a DFT calculation is limited by the

approximate nature of the exchange and correlation energy Exc[n] and the associated

potential, its functional derivative. While, at present, many algorithms for a very

accurate or even exact exchange potential vx(r) and energy Ex[n] are available [3, 4],

better approximations for calculating accurate correlation energies Ec[n] are still

needed.
In a recent paper [5], we proposed an alternative approach to build the DFT

correlation energy Ec[n]. The method consists in solving simple radial equations to

generate the spherically and system-averaged pair density (APD) f (r12) along the

so-called adiabatic connection. Besides its practical use for DFT, we realized that

this method has many aspects that deserve to be better investigated, including the

possibility for an alternative theory completely based on f (r12). In this work, we

sketch the basic ideas for this alternative theory, further we discuss them with simple

physical examples, and deal with some of the aspects that went overlooked in [5].

The scope of this paper is to lay the foundations for an approach that will be further
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developed towards the construction of a self-consistent scheme combining the radial

equations for f (r12) with the Kohn–Sham (KS) equations.
The paper is organized as follows. After defining the notation, we develop in

section 3 the formalism corresponding to a theory based on the spherically and

system-APD, reviewing at the same time the corresponding concepts for DFT.
We hope that this parallel treatment will make it easier for the reader to familiarize

with the new concepts. We then give, in section 4, some simple physical examples.
Section 5 is devoted to explain how the ideas of section 3 can be used to build

correlation energy functionals for DFT. A simple, physically motivated, approxima-
tion for the unknown effective electron–electron (e–e) interaction that appears in the

formalism is discussed in section 6, where applications to two-electron atoms and to
the uniform electron gas are also briefly reviewed. The last section is devoted to

conclusions and perspectives.

2. Definitions

We start from the standard N-electron Hamiltonian (in Hartree atomic units,
p ¼ m ¼ a0 ¼ e ¼ 1, used throughout)

H ¼ Tþ Vee þ Vne, ð1Þ

T ¼ �
1

2

XN
i¼1

r
2
i , ð2Þ

Vee ¼
1

2

XN
i6¼j

1

jri � rjj
, ð3Þ

Vne ¼
XN
i¼1

vneðriÞ, ð4Þ

where vne is the external potential due to nuclei. Given �, the ground-state

wavefunction of H, we consider two reduced quantities that fully determine,
respectively, the expectation values h�jVnej�i and h�jVeej�i, i.e. the usual

one-electron density

nðrÞ ¼ N
X
�1...�N

ð
j�ðr, r2, . . . , rNÞj

2dr2 . . . drN, ð5Þ

and the spherically and system-APD, which is obtained as an integral of |�|2 over all
variables but r12¼ |r1� r2|,

f ðr12Þ ¼
NðN� 1Þ

2

X
�1...�N

ð
j�ðr12,R, r3, . . . , rNÞj

2 d�r12

4p
dR dr3 . . .drN, ð6Þ

where r12¼ r1� r2, and R ¼ 1
2ðr1 þ r2Þ. The function f (r12) is also known

in chemistry as intracule density [6–12], and, when multiplied by the volume
element 4pr212dr12, is proportional to the probability distribution for the e–e distance.

2644 P. Gori-Giorgi and A. Savin



We then have

h�jVnej�i ¼

ð
nðrÞvneðrÞdr ð7Þ

h�jVeej�i ¼

ð
f ðr12Þ

r12
dr12 ¼

ð1
0

f ðr12Þ

r12
4pr212 dr12: ð8Þ

In the following text we also deal with modified systems in which the external

potential and/or the e–e interaction is changed. Thus, the notation Vee and Vne

will be used to characterize the physical system, while the modified systems will be

defined by W and V, with

W ¼
1

2

XN
i 6¼j

wðjri � rjjÞ, ð9Þ

V ¼
XN
i¼1

vðriÞ, ð10Þ

where the pairwise interaction w always depends only on |ri� rj|.

3. Formalism

In this section we present an ‘APD-functional theory’ (APDFT) based on the

function f (r12) highlighting, step-by-step, the analogies in reasoning with the

derivation of standard DFT.

3.1. DFT – the universal functional

In standard DFT one defines a universal functional of the one-electron density n

as resulting from a constrained search over all the antisymmetric wavefunctions �

that yield n [13]

~FF ½n;Vee,T � ¼ min
�!n

h�jTþ Veej�i, ð11Þ

or, more completely, as a Legendre transform [14]

F ½n;Vee,T � ¼ sup
v

min
�

h�jTþ Vee þ Vj�i �

ð
nðrÞvðrÞdr

� �
ð12Þ

In both equations (11) and (12), the dependence on the e–e interaction (and on the

kinetic energy operator T ) has been explicitly shown in the functional. The univers-

ality of the functional F stems exactly from the fact that the e–e interaction is always

1/r (and that T is always the same).
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The ground-state energy E0 of the system can then be obtained by minimizing the

energy with respect to n,

E0 ¼ min
n

F ½n;Vee,T � þ

ð
nðrÞvneðrÞdr

� �
: ð13Þ

3.2. APDFT – the system-dependent functional

Similarly, we can define a system-dependent functional (i.e. a functional depending

on the external potential Vne, and thus on the specific system) of the APD f (r12) as

~GG½ f;Vne,T � ¼ min
�!f

h�jTþ Vnej�i, ð14Þ

or better as

G½ f;Vne,T � ¼ sup
w

min
�

h�jTþWþ Vmej�i �

ð
f ðr12Þwðr12Þdr12

� �
: ð15Þ

The ground-state energy can be obtained by a minimization with respect to f

E0 ¼ min
f

G½ f;Vne,T � þ

ð
f ðr12Þ

r12
dr12

� �
: ð16Þ

Evidently, with respect to DFT, the functional G has the disadvantage of being not

universal: in DFT, an approximation for F should be in principle valid for all

systems. However, the crucial point for applications is understanding how difficult

it is to build a reasonable approximation for G[ f;Vne,T ], given a certain Vne. In the

particular combination of DFT and APDFT presented in section 5 the lack of

universality of G is not an issue.
Another issue concerns the N-representability conditions on f (r12), i.e. which

constraints must a given f satisfy to guarantee that it comes from the contraction

of an N-electron wavefunction �. This is a problem shared with other generaliza-

tions of DFT, like the pair-density functional theory [15–19]. The N-representability

conditions of f (r12) are evidently related to those on the pair density, and we thus

might expect that they are not a trivial matter [19]. The definition of the functional G

of equation (15) formally overcomes the N-representability problem by giving a

divergent (þ1) answer for any non-N-representable f (when f is not N-representable

the right-hand side of equation (15) is not bounded from above), but this is not a

practical solution when coming to applications. As we shall see, in the particular use

of APDFT presented in section 5, this issue is not particularly crucial from a prac-

tical point of view, since we use APDFT to build correlation functionals for DFT.

3.3. DFT – adiabatic connection

In DFT, one usually defines a set of Hamiltonians depending on a parameter �
[20–22],

H �
¼ TþW �

þ V �, ð17Þ
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having all the same one-electron density, equal to the one of the physical system

n �ðrÞ ¼ nðrÞ 8�: ð18Þ

If W �¼0
¼ 0 and W �phys ¼ Vee, one switches continuously from a non-interacting

system to the physical system, while keeping the density fixed by means of a

suitable external potential V �. Obviously, the APD f (r12) changes with �. By the

Hellmann–Feynmann theorem,

@E �
0

@�
¼ � � @W

�

@�
þ
@V �

@�

�����
������ �

* +
¼

ð
f �ðr12Þ

@w �
ðr12Þ

@�
dr12 þ

ð
nðrÞ

@v �ðrÞ

@�
dr, ð19Þ

so that by directly integrating equation (19), and by combining it with equation (13),

one obtains

F ½n;Vee,T � ¼ Ts½n� þ

ð�phys
0

d�

ð
dr12 f

�
ðr12Þ

@w �
ðr12Þ

@�
, ð20Þ

where Ts[n] is the kinetic energy of a non-interacting system of N electrons with

density n(r).
More generally, one can be interested in using as a starting point a system of

partially interacting electrons, corresponding to a particular value of the coupling �
(say, �¼�) between 0 and �phys. In this case, if �� is the wavefunction of the system

with partial interaction W � (and external potential V �) we have

F ½n;Vee,T � ¼ h��
jTþW�

j��
i þ

ð�phys
�

d�

ð
dr12 f

�
ðr12Þ

@w �
ðr12Þ

@�
: ð21Þ

Usually, the adiabatic connection is performed along a linear path by setting

W �
¼ �Vee (thus �phys¼ 1), but some non-linear choices can be more convenient

when dealing with approximations.

3.4. APDFT – adiabatic connection

We can also define a set of Hamiltonians

H �
¼ TþW �

þ V �, ð22Þ

in which the function f (r12) is kept fixed, equal to the one of the physical system,

f �ðr12Þ ¼ f ðr12Þ 8�, ð23Þ

If V �¼0
¼ 0 and V �phys ¼ Vne, we are switching continuously from a system of N

free electrons interacting with a modified potential w �¼0(r12), to the physical system.

That is, f (r12) is kept fixed as � varies by means of a suitable e–e interactionW � while

the one-electron density n(r) changes with �. Again, by the Hellmann–Feynmann
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theorem, we find

@E �
0

@�
¼ � � @W

�

@�
þ
@V �

@�

�����
������ �

* +
¼

ð
f ðr12Þ

@w �
ðr12Þ

@�
dr12 þ

ð
n �ðrÞ

@v �ðrÞ

@�
dr, ð24Þ

so that

G½ f;Vne,T � ¼ Tf½ f � þ

ð�phys
0

d�

ð
dr n �ðrÞ

@v �ðrÞ

@�
, ð25Þ

where Tf [ f ] is the kinetic energy of a system of N free fermions (zero external

potential) having the same f (r12) of the physical system. A simple example of such

adiabatic connection is given in section 4.1. As we shall see, given a confined physical

system, the corresponding w�¼0(r12) must be partially attractive (in order to create a

bound cluster of fermions). This could in principle lead to ‘exotic’ ground states for

some of the systems corresponding to �<�phys. This issue is not considered in this

paper, and shall be investigated in future work.
Similarly to the DFT case, it could be convenient to choose as starting point a

system with an external potential corresponding to some coupling constant � (say,

�¼ �) between 0 and �phys. If �
� is the ground-state wavefunction of the system with

external potential V � (and e–e interaction W �) we have

G½ f;Vne,T � ¼ h��
jTþ V�j��

i þ

ð�phys
�

d�

ð
dr n �ðrÞ

@v �ðrÞ

@�
: ð26Þ

3.5. DFT – Kohn–Sham equations

One-particle equations in DFT can be obtained by defining a set of orthogonal

orbitals ’i(r) with occupation number �i that minimize �i�ih’ij �
1
2r

2
j’ii and yield

the density of the physical system, �i�ij’iðrÞj
2
¼ nðrÞ. This gives

�1
2r

2
þ v1ðrÞ

� �
’iðrÞ ¼ "i’iðrÞX

i

�ij’iðrÞj
2
¼ nðrÞ, ð27Þ

where the potential v1(r) is the Lagrange parameter for the density. To fully

specify these equations one needs a rule for the occupation �i of the orbitals. The

Kohn–Sham choice corresponds to occupy the orbitals in the same way as for a

Slater determinant. This determinant is the wavefunction of a system of N

non-interacting electrons constrained to have the same one-electron density of the

physical system, and leads to the identification

Ts½n� ¼ min
f’ig!n

X
i

’i �
1

2
r

2

����
����’i

� �
, ð28Þ

with the same Ts [n] of equation (20). The ground-state energy of the physical system

is then obtained via the Hartree-exchange-correlation functional EHxc[n], defined
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as the difference F [n;Vee,T ]�Ts [n]. This also implies that, in equation (27),

v1(r)¼ vKS(r) ¼ vne(r)þ �EHxc[n]/�n(r).
Usually, the KS equations are derived starting from the non-interacting system

with density n(r), rather than from a constrained minimization of �i�ih’ij �
1
2r

2
j’ii.

This different way of proceeding allows us to keep the analogy with what we will do

in the next subsection for APDFT.

3.6. APDFT – effective equations

Since the e–e interaction is spherically symmetric, the relevant APD that determines

h�jVeej�i is a unidimensional quantity. To obtain simple ‘two-particle’ equations for

f (r12) we start from the kinetic energy operator for the scalar relative coordinate

r12¼ |r2� r1|,

T12 ¼ �r
2
r12 ¼ �

1

r12

d 2

dr212
r12 þ

‘ð‘þ 1Þ

r212
, ð29Þ

and we perform a minimization of �i#ih ij � r
2
r12 j ii with respect to some ortho-

gonal ‘effective’ geminals  i(r12) constrained to yield f of the physical system,

�i#ij ij
2
¼ f leading to

�r
2
r12 þ weffðr12Þ

� �
 iðr12Þ ¼ �i iðr12ÞX

i

#ij iðr12Þj
2
¼ f ðr12Þ:

ð30Þ

The interaction weff(r12) is the Lagrange parameter for f. Again, to fully specify these

equations we need a rule for the occupancy #i of the effective geminals. For spin

compensated systems, we can choose to apply a rule that resembles to a Slater

determinant: occupancy 1 for even ‘ (single symmetry), occupancy 3 for odd ‘
(triplet symmetry), up to N(N� 1)/2 occupied geminals. This rule has been applied

to solve the effective equations (30) in the uniform electron gas, with rather accurate

results [23–25]. It is, however, important to point out that when we apply this

occupancy rule to equations (30)

(1) There is no Slater determinant that can be associated with our effective
geminals: the  i are constrained to give the exact f that cannot be obtained
from a non-interacting wavefunction (for example, any Slater determinant
violates the cusp condition satisfied by the exact f );

(2) More generally, there is no wavefunction (and so no physical system) that
can be built from our effective geminals.

This last point implies that, if we define

Tg½ f � ¼ min
f ig!f

X
i

h ij � r
2
r12 j ii ð31Þ

(with the determinant-like occupancy), we have in general

Tg½ f � 6¼ Tf ½ f �, ð32Þ
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where Tf [ f ] was defined in equation (25). The total energy of the physical system

can then be recovered via the kinetic and external-potential functional defined in

reference [5], FKE[ f;Vne]¼G[ f;Vne,T ]�Tg[ f ]. This also leads to the identification,

in equation (30), weff(r12)¼ 1/r12þ �FKE[ f;Vne]/�f (r12).
An important issue to be addressed concerning the effective equations (30) is

whether a given physical (and thus N-representable) f (r12) is also representable by

the simple ‘effective-geminal’ decomposition of equations (30). This question is

similar to the one arising in DFT: is a physical density always non-interacting

representable? In view of the more complex nature of f (r12) with respect to n(r)

we might expect that this problem is much more difficult to face in APDFT than

in DFT. It seems reasonable that at least the short-range part of a physical f (r12) is

representable by equations (30), while the long-range tail of f of an extended system

could be problematic [26].

4. Simple physical examples: two-electron systems

In this section we give some examples for two-electron systems, in order to gain

physical insight with some of the ideas just introduced.

4.1. A picture from harmonic forces

A very simple picture of the whole adiabatic connection path in both DFT and

APDFT can be gained by looking at an analytic-solvable model, i.e. a two-electron

hamiltonian with only harmonic forces (harmonic electron–nucleus attraction, and

harmonic e–e repulsion too) [11],

HðK, kÞ ¼ �1
2r

2
1 �

1
2r

2
2 þ

1
2K r21 þ

1
2Kr22 �

1
2kjr1 � r2j

2, ð33Þ

where K>0 (attractive nucleus–electron potential), k>0 (repulsive e–e interaction),

and K>2k, to have a bound system. For this hamiltonian,

nðrÞ ¼
2	3=2

p3=2
e�	r

2

, 	 ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK� 2kÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K� 2k

p
þ

ffiffiffiffi
K

p ð34Þ

f ðr12Þ ¼

3=2

p3=2
e�
r

2
12 , 
 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K� 2k

p
: ð35Þ

4.1.1. DFT. If our ‘physical’ system corresponds to some K¼Kne and k¼ kee,
and we want to switch off the e–e interaction (by setting, e.g. k¼ �kee) while

keeping the density fixed, we will simply have to change Kne into K(�) such that

	 in equation (34) does not change. The function K(�) is shown in the upper panel

of figure 1 for the case Kne¼ 3, kee¼ 1. We see that, as �! 0, K(�) decreases,

because a smaller attraction is needed to keep the electrons in the density when

there is no e–e repulsion. Of course, f (r12) changes with �, as shown in the

lower panel of figure 1: as � decreases, the ‘on-top’ value f �(r12¼ 0) gets larger.
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This reflects the fact that when there is no e–e repulsion, it is more likely to find

the two electrons close to each other.

4.1.2. APDFT. If, instead we switch off the external potential, (e.g. by setting
K¼ �Kne) while keeping f (r12) fixed, we will have to change the e–e interaction in

order to keep 
 of equation (35) constant,

kð�Þ ¼ 1
2ð� � 1ÞKne þ kee: ð36Þ

0

 0.5
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 1.5
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 2.5
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0 0.2 0.4 0.6 0.8 1

l

K(l)

lkee

0

 0.02

 0.04

 0.06

 0.08

 0.1

0 0.5 1 1.5 2 2.5 3

fl (r
12

)

r12

l = 0

l = 0.3

l = 0.7

l = 1

Figure 1. Adiabatic connection in DFT for the simple harmonic hamiltonian of
equation (33). The e–e interaction is multiplied by a parameter �, and the density is kept
fixed by a suitable external potential (upper panel). The APD f (r12) changes with � as
shown in the lower panel.
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The one-electron density along this adiabatic connection is

n �ðrÞ ¼
2	ð�Þ3=2

p3=2
e�	ð�Þr

2

,

	ð�Þ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�KneðKne � 2keeÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kne � 2kee

p
þ

ffiffiffiffiffiffiffiffiffiffi
�Kne

p :

ð37Þ

Thus n �(r) is a Gaussian that, as � ! 0, becomes more and more spread, as shown in

the lower panel of figure 2. When the external potential goes to zero, the system

nx (r
)

x = 0

x = 0.5

x = 0.1

x = 0.01

−0.5

0

 0.5

1

 1.5

2

 2.5

3

0 0.2 0.4 0.6 0.8 1

 

xKne

x

k(x)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.5 1 1.5 2 2.5 3

r

Figure 2. Adiabatic connection in APDFT for the simple harmonic hamiltonian of
equation (33). The external potential is multiplied by a parameter �, and the function f (r12)
is kept fixed by a suitable e–e interaction (upper panel). The density n(r) changes with � as
shown in the lower panel, and as �! 0 becomes completely delocalized.
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becomes translationally invariant and the wavefunction for the center-of-mass
degree of freedom is simply a plane wave. Correspondingly, the e–e interaction
changes with equation (36): we see from the upper panel of figure 2 that, as � gets
smaller, k(�) becomes smaller (less repulsive), and then it changes sign at some
0<�<1, becoming an attractive interaction. For a confined system, when the exter-
nal potential approaches zero, an attractive e–e interaction is needed in order to keep
f (r12) fixed. Moreover, in the very special case of harmonic forces there is a value
�� ¼ 1� 2kee=Kne 2 ð0, 1Þ for which the e–e effective interaction is zero everywhere,
w�

�

¼ 0.
Of course, when the e–e physical interaction is the Coulomb potential 1/r12 this

cannot happen: a system with the same f (r12) of the physical system cannot have
w¼ 0 everywhere. This can be simply understood by thinking that there is no
external potential that can force the system to have the correct cusp [27] at r12¼ 0.
In fact, along any adiabatic connection that keeps f (r12) fixed, equal to the one of
a system with Coulombic e–e interaction, w �(r12) will always behave as 1/r12 in the
limit of small r12.

4.2. He atom

Consider now the two electrons of a He atom. They feel the attraction of the nucleus,
�2/r, and they repel each other with potential 1/r12. Given the exact (or a very
accurate [28]) ground-state wavefunction �, we can calculate the ‘exact’ density
n(r) and the ‘exact’ f (r12). Now, we can consider the case in which W¼ 0 and n(r)
is kept fixed (the KS system in DFT, section 3.3), and the one in which V¼ 0 and
f (r12) is kept fixed (APDFT, section 3.4).

4.2.1. DFT. We construct a system which has the same density n(r) of the physical
one and no e–e interaction. This is the KS system, in which the two electrons do not
interact (w¼ 0) and feel an external potential v(r) less attractive than �2/r, as in the
case of the harmonic potential of figure 1. The APD f �¼0(r12) of this system will be
different from the physical one, as shown in figure 3. We see that the change in the
function f when we switch from the physical system to the KS one is qualitatively
similar to the one of figure 1, i.e. at �¼ 0 the ‘on-top’ value is higher than the
physical one. In the case of Coulomb e–e interaction the physical f (r12) has a
cusp, f 0(0)¼ f(0), due to the short-range divergence of 1/r12 [27].

4.2.2. APDFT. In APDFT, we can construct a system which has the same f (r12) of
the physical one, and zero external potential (V¼ 0). This is a system of two bounded
fermions interacting with the effective potential w �¼0(r12) of figure 4 (calculated from
an accurate [5, 28] f ). As in the case of harmonic forces, the density of this system is
completely delocalized, because the wavefunction for the center-of-mass degree of
freedom is a plane wave. We can imagine that along the linear adiabatic connec-
tion, v �(r)¼� 2�/r, the corresponding w �(r12) changes smoothly between 1/r12
(at �¼ �phys¼ 1) and the potential w �¼0(r12) of figure 4. As anticipated, we see that
at �¼ 0 the effective e–e interaction has an attractive part, which is necessary to
have the same f of a physical confined system. However, as already pointed out,
for small r12, the e–e interaction must always behave as 1/r12, to produce the exact
cusp in f (r12) [27].
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Figure 3. The function f �(r12) at the two ends of the adiabatic connection in DFT for the
He atom. For �¼ 0, we have a system of two non-interacting (W¼ 0) electrons constrained by
an external potential to yield the same density of the physical system. For �¼ �phys we have the
physical system with full interaction 1/r12 and external potential �2/r (from the wavefunction
of [28]; see also [5]).
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Figure 4. The e–e interaction w�(r12) at the two ends of the adiabatic connection in
APDFT for the He atom. For �¼ 0 we have a system of two free fermions (zero external
potential) interacting with w�¼0(r12). This system has the same f (r12) of the physical system,
but a completely delocalized one-electron density. For �¼ �phys we have the physical
system, with e–e interaction 1/r12 and external potential �2/r. (The potential w at �¼ 0 has
been calculated from the accurate wavefunction of [28]; see [5] for more details.)
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5. From APDFT to correlation energy functionals for DFT

In section 3 we have underlined the similarity of the roles played by n(r) and f (r12)

from a mathematical point of view: the former completely determines h�jVnej�i,

and the latter h�jVeej�i. However, while the KS system is a substantial simplifica-

tion of the many-electron problem (yielding to single particle equations), the

auxiliary system of section 3.4 (with zero external potential) is still a complicated

many-body object, consisting of N fermions interacting with a partially attractive

potential. The radial equations of section 3.6 are a great simplification of the

problem, but we might expect that building approximations for the whole functional

FKE[ f;Vne] could be not easy.
Our basic idea, instead, is to use APDFT to build what is missing in DFT, i.e. to

build f �(r12) along the adiabatic connection in DFT. As said in the Introduction,

we insert our approach in the framework of exact-exchange DFT [3, 4, 29, 30]

in which only the correlation energy functional needs to be approximated. The

ground-state energy of the physical system is given by

E0 ¼ Ts½n� þ

ð
nðrÞvneðrÞdrþ EH½n� þ Ex½n� þ Ec½n�, ð38Þ

where EH[n] is the usual Hartree term, Ex[n] is the exchange energy, obtained by

putting the Kohn–Sham orbitals in the Hartree–Fock expression for exchange, and

the correlation energy, Ec [n], is unknown. Equation (38) can be also rewritten as

E0 ¼ h�KSjTþ Vee þ Vnej�KSi þ Ec½n�, ð39Þ

where �KS is the Slater determinant of KS orbitals, i.e. the wavefunction of N

non-interacting electrons constrained to yield the same n(r) of the physical system.

Combining equation (20) with equation (39), we see that the wanted correlation

energy is given by

Ec½n� ¼

ð�phys
0

d�

ð1
0

dr124pr
2
12 f

�
c ðr12Þ

@w �
ðr12Þ

@�
, ð40Þ

where

f �c ðr12Þ ¼ f �ðr12Þ � f �¼0
ðr12Þ ¼ f �ðr12Þ � fKSðr12Þ: ð41Þ

Thus, in order to get the KS correlation energy, we should compute f �(r12) for each

Hamiltonian H � of section 3.3. Our approach consists in solving the simple radial

equations of section 3.6 for each H � along the adiabatic connection in DFT. This is

not particularly expensive: we are dealing with unidimensional equations, and, if the

dependence of w � on � is smooth, we will only need few � values (�5–30) between

0 and �phys. With this particular combination of APDFT and DFT, we do not need

to approximate the whole functional FKE along the DFT adiabatic connection, but

only its functional derivative, i.e. the effective interaction weff(r12) which appears

in equation (30), since the remaining information is provided by DFT. As we
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shall see, simple physical arguments can be used to build reasonable approximations
for weff(r12) at each coupling strength �.

Since the effective equations yielding f �c ðr12Þ must be solved for each system,
we speak of system-adapted correlation energy density functionals.

6. Building approximations

In [5], we proposed and successfully tested a simple approximation for building
weff(r12) along the DFT adiabatic connection for two-electron atoms.
This approximation starts from w

ð0Þ
effðr12Þ, the effective e–e interaction that gives

fKS(r12) when inserted in equations (30). In the special case of two-electron systems,

w
ð0Þ
effðr12Þ is directly available in a KS calculations. For systems with more than two

electrons, w
ð0Þ
effðr12Þ could be calculated, e.g. with the methods in [31, 32]. Then, the

idea is to build an approximation for a correlation potential, to be added to w
ð0Þ
effðr12Þ,

which describes the change in f when the e–e interaction is turned on, from zero to
w �(r12). To do this, we defined an average density �nn,

�nn ¼
1

N

ð
dr nðrÞ2, ð42Þ

and, correspondingly, an average radius �rrs,

�rrs ¼
4p �mm

3

	 
�1=3

: ð43Þ

We then built a correlation potential wc,�
eff ðr12Þ, as

wc,�
eff ðr12Þ ¼ w �

ðr12Þ �

ð
jrj� �rrs

�nnw �
ðjr� r12jÞdr: ð44Þ

The idea behind equation (44) is the following: the e–e interaction w � is screened by
a sphere of radius �rrs and of positive uniform charge of density �nn that attracts the
electrons with the same interaction w �. The average density �nn of equation (42)
(and thus the average �rrs) is kept fixed to mimic the fact that the one-electron density
does not change along the adiabatic connection.

In order to gain insight with our construction, let us consider the case of the
physical system, w�¼�phys ¼ 1=r12, for which equation (44) corresponds to

wc
effðr12Þ ¼

1

r12
þ

r212
2 �rr3s

�
3

2�rrs

 !
�ð�rrs � r12Þ, ð45Þ

where �(x) is the Heaviside step function. Figure 5 shows, for the He atom, the
potential w

ð0Þ
eff which generates fKS, together with the ‘exact’ correlation potential

wc
eff, and the approximation of equation (45). We see that the potential w

ð0Þ
eff is a

confining potential for the variable r12: our idea is to include in this term, available
from DFT, the contribution to f (r12) coming from the particular external potential
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of the system and from the fermionic structure of the wavefunction. The remaining
part to be approximated, the correlation potential wc

eff, must include the effect of the
e–e repulsion while keeping the density fixed, i.e. it must be essentially a screened
Coulomb interaction. We see from figure 5 that the simple approximation of
equation (45) is reasonable, i.e. the screening length is well approximated by �rrs of
equations (42)–(43). For comparison, the full Coulomb repulsion 1/r12 is also shown.
Notice that in the special case of two-electron systems we have Tf [ f ]¼Tf g

�r [ f ], so
that the potential w�¼0 of figure 4 corresponds, in figure 5, to the sum of w

ð0Þ
eff and the

‘exact’ wc
eff.

In [5], we inserted the potential w
ð0Þ
effðr12Þ þ wc,�

eff ðr12Þ into equations (30), and
solved them for several two-electron atoms. Our results can be summarized as
follows: (i) at �¼ �phys (i.e. for w �

ðr12Þ ¼ 1=r12) we obtained APD f (r12) in close
agreement with those coming from accurate variational wavefunctions [28],
especially at small r12; (ii) by setting w �

ðr12Þ ¼ erf ð�r12Þ=r12 (the ‘erf ’ adiabatic
connection), the KS correlation energies from equation (40) have an error which
is less than 4mH for nuclear charges Z� 2; (iii) again with the ‘erf ’ adiabatic
connection, we found that when the reference system corresponds to some �¼�
between zero and �phys [as in equation (21)] our correlation energies are one order of
magnitude better for �01=�rrs.

The correlation potential of equation (45), originally proposed by Overhauser
[33], has been also used to solve the effective equation (30) for the uniform electron
gas (UEG), yielding to a very accurate description of the short-range part of f (r12) at
all densities [23]. A more sophisticated effective potential, based on a self-consistent
Hartree approximation, extended such accuracy to the long-range part of the UEG
f (r12) at metallic densities [24]. Other simple approximations for weff(r12) in the
UEG have also been proposed and tested [25].

r12
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2
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6
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0 0.5 1 1.5 2

He

1/r12
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(0)

Figure 5. Construction of an approximation for the effective potential that generates the
APD f (r12) of the He atom: wð0Þ

eff is the part of the potential that generates the APD of the KS
system. The ‘exact’ [5, 28] correlation potential wc

eff and our approximation of equation (45)
are shown, together with the Coulomb repulsion 1/r12.

System-adapted correlation energy density functionals 2657



7. Conclusions and perspectives

We have presented the ideas concerning a theory based on the spherically and
system-averaged pair density f (r12), and we have suggested to combine it with
DFT to obtain system-adapted correlation energy functionals. So far, the method
has been tested for the He series [5] and for the uniform electron gas [23–25], yielding
promising results.

In order to completely develop the approach presented here, many steps are still
to be performed and many issues are to be addressed. Among them, the most
relevant ones concern the construction of better approximations for the effective
electron–electron interaction that enters the formalism, and the implementation of
a self-consistent scheme to combine the Kohn–Sham equations with the correlation
energy functional arising from our approach. Last but not least, with the approx-
imations tested so far our approach works very well for the short-range part of
f (r12), so that the combination with multideterminantal DFT [21, 34] (in which
only the short-range correlations are treated within DFT) is also very promising
and deserves further investigation.
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