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The negative correlation energy(r,{) per particle of a uniform electron gas of density parametemd
spin polarizatiory is well known, but its spin resolution intp], 11, and| | contributions is not. Widely used
estimates are incorrect, and hamper the development of reliable density functionals and pair distribution
functions. For the spin resolution, we present interpolations between high- and low-density limits that agree
with available quantum Monte Carlo data. In the low-density limit o+ 0, we find that the same-spin
correlation energy is unexpectedly positive, and we explain why. We also estimdtetite contributions to
the kinetic energy of correlation.
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. INTRODUCTION distribution function®?°?1g, (rs,Z,u) of the uniform gas
for all rg and . Our present work provides the missing in-
The uniform electron gas is a paradigm for density-gredient needed to find the corresponding spin-resolved pair
functional theory:~3 the most widely used method for elec- distribution function, which could serve as the starting point
tronic structure calculations in both condensed-matter physor the development of density functionals such as spin-
ics and quantum chemistry. The effects of exchange antesolved weighted density approximatidigiv) An estimate
correlation can be evaluated and understood in the uniformean be made for thé dependence of th¢ and | contribu-
density limit, and then transferred to realistic systems. This igions to the kinetic energy of correlation, a key ingredient for
done not only in the local spin-densitSD) approximation  the approach to spin dynamics of Qian and Vighaknd
but also beyond LSD in generalized gradient approximationsiso for the momentum distributiéh of a spin-polarized
(GGA's), meta-GGAs, and hybrid functionafsThe correla-  electron gas.
tion energye.(rs,{) per particle in a uniform gas of density ~ We shall first derive exact limits at high densities (
parameterrs=(477nagl3)‘1’3 and spin polarizationf=(n; —0) and extreme low densities{— ) using simple physi-
—n,)/n (wheren, is the density of spirr electrons andh  cal arguments. In the latter limit, we find that the same spin
=n;+n,) is well known, for example, from quantum Monte contribution to the correlation energy can be positive, and we
Carlo (QMC) studieé® that have been parametriZef to provide an intuitive physical picture to explain this feature.
respect known limits, but the spin resolution @f into 7|, While the total correlation energy must be negative, indi-
11, and | | contributions is not known. In this work, we Vidual terms of it(e.g., the kinetic energy of correlatipoan
determine the spin resolution for all and ¢ as an interpo- be positive. We then build up and discuss our interpolation
lation between high- and low-density limits, consistent withformulas.

(=0 QMC data®

This spin resolution is of interest in its own right, and can Il. DEFINITIONS
also be used in several ways) Some beyond LSD correla-
tion energy functionals need a missing spin resoldtion Correlation effects arise from the Coulomb interaction,
have been construct®!on the basis of the exchange-like Which is a two-body operator. When evaluating the energy of
ansatz of Stolet all* the system{W|H|¥) one can split the sum over the electron

spins intoT], 17, and| | contributions. The corresponding
ENn;,n 1=Edn;,n]-EJfn;,0—EJ[0n] (1) splitting of the correlation energy of the uniform electron
gas,
for the uniform gas. This assumption was shoywsing
QMC results to be inaccurate for=0 (see Fig. 1in Ref. e(rs,O)=ell(rg,O)+ell(rg, )+ el (rs,0) (2
15, although the significance of this observation for density-
functional theory was not fully recognized there. Our workis the object of this Rapid Communication. The real-space

provides a firmer basis than Efl) for such constructions. analysis of the spin-resolved correlation energi@‘é’(rs,g)

(i) Correlation energy functionals such as the local spi . . 0!
density and generalized gradient approximatidhtc.l’ qes pr%’geglb\x;gfeﬁirlr rela_tlror|1 ig(ilhe:(rélgei: tr(()rns-;eé;,e?[rc()iegi,s-
can alternatively be constructed without a spin resolutiontéﬁé’e ' 172

but their later spin resolutiofto permit comparison or com-
bination with correlated-wave-function resdfts®!y de-
mands such a resolution for uniform densiti@s) A sophis- 60'0'/([. 0:277&[%” Eaa’(r Z,uyudu. @)
ticated analytic modét is now available for the pair ¢ s njo 77 V¥

0163-1829/2004/6@)/0411034)/$22.50 69 041103-1 ©2004 The American Physical Society



RAPID COMMUNICATIONS

PAOLA GORI-GIORGI AND JOHN P. PERDEW PHYSICAL REVIEW B9, 041103R) (2004
0.75 T - - - - when a cutoffc1/\r, (due to Thomas-Fermi screening ef-
fect9 at small wave vectors is introduced, gives rise to a
0.7 ¢ leading term iney(rg,{), equal tocy({)Inrg. The function
S oes | co(¢) is exactly knowrf® The direct term[Eq. (5.110 of
e Ref. 26 can be divided intd |, 77, and| | excitation pairs
~“::, 0.6 to derive
w
0.55 1+¢
Fi1(re—0,0)=F = 5
e 1100 =FIP(O =715, (5
0 2 4 6 8 10 with 1(2)=cq(2)/ce(0), asconjectured in Ref. 25[Since

report formulas forf 7.] The Stollet al. ansatz of Eq(1) is

FIG. 1. Fraction of ] correlation energy, Fy(rs,&) 5 correct forr,—0 (and for allrs when|¢|=1, but not

_6Ci(rs, Olel(rs,) at {=0. Our Eq.(9) is compared with the otherwisé
GSB [Gori-Giorgi, Sacchetti, and BacheléRef. 15] values ex- ' . . . . h
tracted from QMC(Ref. 5 data @), and with the Stollet all* In the opposite or strong-interaction limits—c, the

PWO2(Ref. 20, and SKTF[Schmidt, Kurth, Tao, and PerdefRef.  10ng-range Coulomb repulsion between the electrons be-
28)] scaling reI’ations. Valence elec,trons ﬁa\ﬁe ;gse. comes dominant with respect to the kinetic energy, and thus

with respect to statistics; Coulomb repulsion suppresses

o . electron-electron overlap so that the electrons no longer
The correlation hola,g.” (vs.{,u) describes the change know they are fermions. In this limit, the total energy be-

5120 .
(due to correlation onlyof spino’ electron density ati, comes independett®272lof ¢. Its leading term in the

when a spins electron is at the origing,; is averaged over o expansion is equal te-d; /rs, wherd d;=0.892, and
coupling strength, whilg is for full coupling strength. We is purely potential energy, with no kinetic energy contribu-

define fractions=,,(rs,{) such that tion. In this limit, the total energy is thus equal to the
, exchange-correlation energy, .= e, + €.. Moreover, since
€7 (r5,0)=€(rs,{)F 4o (1s,0), (4)  the statistics becomes irrelevant, we expect that
and we investigate their properties. In what follows, we use 2 \2 2 \2 2
Hartree atomic units, and the parametrizationegfr,{) — ETT:<—) ell= ell=€., (6
and its limits from Ref. 8. I N O I

where the prefactors take into account the available numbers

of pairs. In other words, we expect thafdudu g"" fu
When r,—0, the Coulomb electron-electron interaction becomes independent of and o', so that spin structure
can be treated as a perturbation to the noninteracting Fernliecomes unimportant for the exchange-correlation and total
gas. The first-ordefin the Coulomb potentialcorrection energies(although very important for the correlation energy
term gives the exchange energy=e/ +e.!, wheree|'  alone. Then theF . (rs—=,)=F-",({) are given by
=—(3/8mary)(1+)*3 eii:—(alsmrs)u O, and

IIl. EXACT LIMITS

a=(97/4)~ 1. As for correlation, the real-space analysis of (g 3(1+ )R- 2ma(1+0)%d, @
the exchange energies is provided by the exchange holes 116 = (14 )B+(1— 3 —87ad,

N L0z (L,ulrg)—1], which are analytically known(see, [(1+0 (1=~ 8mad,

e.g., Ref. 21 The high and low densitf . are displayed in Fig. 2. We

The second-order correction to the energy of the nonintersee that, in the spin-unpolarized gas, the same spin (
acting Fermi gas is the sum of a direct term and a second+ | |) contribution to the correlation energy is 50% when
order exchange term. Only the direct term diverges, and;s— 0 but roughly O whem —c. This can be understood in
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FIG. 2. Spin resolutioer,(rs,g)=e,‘:""(rs,g“)/ec(rs,g) as a function of¢ for differentrs. The high-densityHD) and low-density
(LD) limits are given in Egs(5) and(7). Ther =3.28 curves correspond to the SKTRef. 28 scaling relation of Eq(8), while for other
density valuesrs;=1, 10, and 10Dour interpolation formulas of Eq9) have been used.
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1.20 - ' : : : =0] the same spin correlation enerffyq. (3) with o=0c"']
1.00 L would necessarily be negative. So, what must really happen
0.80 [ increasing r, £=0 | is that the same spin electrons that accumulate in the peak at
%% 0.60 | / / u=~2rg include some that have been pushed out from

0.40 [T/ ] <2rg and some that have been pulled in from 2rg. This

4 is again illustrated in the lower panel of Fig. 3. We interpret
0.20 | 4 exchange-only (rg = 0) —— 1 .

exchange + correlation ———- the second zero daj., which appears at large but only at

0.00 , larger, as the energetically important remnant of the long-
02} /\ 1 range oscillation ofy. in a Wigner crystal.

w O — Positive same spin correlation energy may be an exotic
§ 02| ] effect, but the blockage of negative same-spin correlation
%o 04l Tl g > o | also occurs in a nonmagnetic Mott insulator, e.g., an ex-
o - £=0 panded lattice of hydrogen atoms where Coulomb correlation

06T o 1 suppresses the §)? configuration on a given site. The
-0.8 ' : : ‘ : blockage of same spin correlation occurs even in a weakly
0 1 2 3 4 5 6 . . .
wrg correlated spin-unpolarized system when the correlation hole

is spatially constrained, as for an atdf®°In the neon

FIG. 3. Upper panel: the spin-resolved pair distribution func-atom, the trugas cited in Ref. 1Bantiparallel-spin correla-
tions for the paramagnetic gas. The dashed arrows show the trend 80N energy is 65% of its LSD value, while the true parallel-
the holes as the coupling strength is increased. Lower panel: spin correlation energy is only 30% of its LSD value.
real-space analysis of the correlation energy in the extreme low-

density limit for the paramagnetic gas. The results are from the |y INTERPOLATION BETWEEN HIGH AND LOW
model of Ref. 21. DENSITY

imple wav. The exchanae hol n by th m . We want to build up interpolation formulas for
a simple way. The exchange nhole seen by the same SpE'M,(rS,g) that include all the information available on the

electrons is deep for electron-electron distanuesrg, as h . . - o
. . - spin resolution ok . Besides the high- and low-density lim-
shown in the upper panel of Fig.(3olid line, 11+ ). But _itg, we have datacfon,(rS,O), in the range 08r.<10.

there is a second length scale, the Thomas-Fermi SCreening .« data have been obtained in Ref[@Bri-Giorgi, Sac-
length \rs. Forr,—0, the important correlations, which de- chetti, and BacheletGSB)] by integrating spin-résolved
termine the leading terme(inry) of €., arise from this sec- o\ correlation hole§Moreover, Schmidt, Kurth, Tao, and
ond length scaleyr>r5, and are essentially unaffected by perde\§® (SKTP), starting from nearly exact limits of the
exchange: the electrons that participate in this correlatioRpin-resolved correlation holes, proposed a scaling relation
have no way to know if the electron &t=0 is spinf or  that js in agreement with the GSB datar gt 3.28, and that,
spin-|, so by symmetry the same spin and opposite spifys shown in Fig. Zcurves labeled with f=3.28"), lies in
correlation energies are equal. In the opposite ligi->  petween the high- and the low-density limits with a very
the antiparallel-spin correlation hole can get deep #or “reasonable” shape. The SKTP scaling should thus be a

=rs, as shown in the upper panel of Fig. 3. ~good ‘“intermediate point” for our interpolation formulas.
As rg mcreases;glé deviates more and more from its \We thus define

noninteracting valugequal to 1 for allu), the only con-

straint being its positiveness. But the same spin correlation 1+ ¢\ e (3.28,1)
- ; gy FTR(0) = (8)
hole is “blocked” from doing this by the exchange hdkee, 1 2 €.(3.2870)"
again, the upper panel of Fig).3Thus the system minimizes .
its energy by focussing the correlation on opposite spin pairs2nd we parametrizg ., (rs,{) as
In the extreme low-density limit, a simple qualitative picture . b
can be obtained by using the correlation-hole model of Ref. FI () + A (ONTs+BF.D (01
21 (in which energetically unimportant long-range oscilla- Foo(rs,0)= - (9
1+C\rs+Bry

tions are averaged outin the lower panel of Fig. 3, we

report the corresponding real-space analysiglofande.! A, (¢) is found by requiring that F,,/(3.28¢)
+ et for ry—o0. We see that the same spin correlation hole=F5¢1%(¢), i.e.,

for u<rg cannot get as deep as the opposite spin one.

Figure 2 also shows that in the spin-unpolarized gas the FXTR O —F™P (o)
same spin correlation energy is slightly positiie,(<0) A, ()= T +CcFXR O
whenrgs—oo. In this limit, the electrons correlate strongly, V3.28
and the exchange-correlation holes show a high first- _'_B\/S_za:FSKTP(é,)_FLD 0] (10)

neighbor peak ati~2r (lower panel of Fig. 3 If the only

effect of same spin correlation were to push same spin elecrhe form of Eq.(9) is motivated by the expression for the
trons away from the region of smalland pile them up at correlation energy given in Ref. 7. The parame®rand C
u~2rg, then[by the sum rule integrafdu4=u®n,g?’(u)  are fixed by a best fit oF ,.(r,0) to the GSB data fory
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€[0.8,10: B=0.178488,C=2.856. In Fig. 1, ouF; (rs,0)  (11), we also confirm that, for £r <10, the quantity !
is compared with the GSB dataand with the widely used —té)/tc(rs,i) is almost independent of,, as recently found
Stoll et al."* ansatz of Eq(1), which strongly underestimates i, a more sophisticated calculation within the Singwi-Tosi-
the fraction of | correlation energy at metallic and lower | and-Sjdand approximatior®
densities. The results for the paramagnetic gas corresponding
to other proposed scaling relations are also shown. Our in-
terpolation formulas as functions ¢f atr;=1,10, and 100, VI. CONCLUSIONS
are displayed in Fig. 2.
In summary, we have found the spin resolution of the
V. KINETIC ENERGY OF CORRELATION electron gas correlation energy, via an approach applied to
but not restricted to the three-dimensional uniform electron
Defining®® e} = ;' + 3 €l (with a similar equation fot),  gas. Our results can be used to understand correlation in
the adiabatic connection between the noninteracting and irmore realistic systems, and to construct improved density
teracting limits for a given density suggests estimatingfthe functionals and pair distribution functions. We have found
and | contributions(from the one-particle density matjito  that the same spin correlation energy can be unexpectedly

the kinetic energy of correlation=t!+t} asg® but understandably positive. We have also provided support
for resolutioné®3! of the kinetic energy of correlation intp
to(rg,0)~— i[r € (re,0)] (11) and | terms. It is further possible to show that the positive
cL s grg- STer sl spin stiffness of correlatidrf has positive] | and negative

although as Ref. 30 points out there is only one couplingT“'ll contributions.

constant with a Hellmann-Feynman theorem, not one for We thank S. De Palo, S. Kuemmel, M. Polini, G. Vignale,
eacho. Taking Eq.(11) as a plausible approximation, we J. Tao, and P. Ziesche for useful discussions. Financial sup-
find that the corresponding result for—t/ is in reasonable port from MIUR through COFIN2001 and from the US Na-
agreement with the scaling relation given in E29) of Ref.  tional Science Foundation under Grant No. DMR 01-35678
23. (For rg=5, the difference is less than 3.5%/ia Eq. is acknowledged.
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