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We construct analytic formulas that represent the coupling-constant-averaged pair distribution function
9xe(rs, £, keu) of a three-dimensional nonrelativistic ground-state electron gas constrained to a uniform density
with density parameter,=(9/4)"¥ke and relative spin polarizatioti over the whole range @r <« and
—1< <1, with energetically unimportant long range-¢ ) oscillations averaged out. The pair distribution
function g, at the physical coupling constant is then given by differentiation with respect tOur formulas
are constructed usingnly known theoretical constraints plus the correlation enexdy.,{), and accurately
reproduce the,. of the quantum Monte Carlo method and of the fluctuation-dissipation theorem with the
Richardson-Ashcroft dynamical local-field factor. Oy, is correct even in the high-density (~0) and
low-density ¢s— o) limits. When the spin resolution a&f; into 77, ||, and{| contributions is known, as it
is in the high- and low-density limits, our formulas also yield the spin resolutiog,of Because of these
features, our formulas may be useful for the construction of density functionals for nonuniform systems. We
also analyze the kinetic energy of correlation into contributions from density fluctuations of various wave
vectors. The exchange and long-range correlation parts ofggurs,Z,keu)—1 are analytically Fourier
transformable, so that the static structure faﬁ@(rS ,{,klIkg) is easily evaluated.
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I. INTRODUCTION, DEFINITIONS, AND OUTLINE where ke = (97/4)3/r4 is the Fermi wave vector. Clearly
then

The exchange-correlation pair-distribution function

Oxc(r,r") of an N-electron system is defined as J
gxc(rsagkau):?[rsgxc(rséa)’)“y:k,:u (4)
S

_1)
Ol n(r)n jl (1./,rg---1y)[2drg- - -dry,  and
@ OrelFs, £ KeU) = Oxe(ATs, £ keU). (5)

wheren(r) is the electron density anf is the many-body  The high-density (— 0) limit is the weak-interaction limit
wave function. Its coupling-constant averagg(r,r') is  in which the kinetic energy dominates. Relativistic effects
equal(in the Hartree units used throughpto are important for <0.01. The low-densityr— ) limit is
the strong-interaction limit in which the Coulomb potential
— , , energy dominates. Fog= 100, the true ground-state density
el 1 ):fo dNgy(r.r"), @ is not uniform® but there is still a wave function that
achieves the lowest energy of all those constrained to a given

where g} (r,r") is the pair-distribution function when the uniform density.
electron-electron interaction is/|r—r’| and the density is The electron gas of uniform density is a paradigm of the
held fixed at the physical ok=1 density. The coupling- density functional theory for regl, nonuniform elec'_[ronlc
constant averaged,. plays a crucial role in density func- SYStéms. The exchange-correlation energy of the uniform gas
tional theory, since it can account for the kinetic energy ofiS the input to the local spin density approximation, while the
correlationt In fact, n(r")[gu(r.r') — 1] is the density at’ f:ouplmg—constqnt—averaged palr—dlstr|but|on funpnon is an
of the exchange-correlation hole around an electron at input to the derivation of gradient-corrected functiorfelgo

In the uniform electron gas)(r)=n andg,(r,r') only the construction _of the correspond_lng syster_n-averaged
depends oru=|r—r’'|, and parametrically on the density exchange-correlz_itlon hole of a nonuniform d_englmd to
parameterrs—(3/41-rn)1’3 and on the spin polarization the implementation of the fully nonlocal weighted density

= (N )/N. The coupling-constant average is in this approximatiorﬁ‘8We hope that our improved analytic model
caséTequﬁvalent to an average over: will be useful for these purposes, and also for the construc-

tion of new and more accurate functionals. In particular, the
1 spin-resolved version of our model, when fully developed,
J— S 1 1 1 1

re 2 Keu :_f oz keu)dr! 3 coulq bring useful new information for the cons.tructlon c_)f
OcclFs: & kel OcclFs £ikeu)drs ® functionals. Indeed, simple hypotheses for the spin resolution
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have already been used to construct several correlation T T T

functionals®!® The uniform gagy,. is also relevant to den- 1
sity matrix functional theory? 08 |
The static structure factoB,(rs,{,k/kg) is the Fourier
transform g 06
0.4
4 ©
ch(rs’gvk/kF)zl""_J’ [Ixc(rs, ¢ kpu) — 1] 0.2 r this work
3mJo 0 exact exchange -
2sinku
X (keu) "=~ d(keu), (6)

and its coupling-constant average; is obtained by chang-
ing gy iNto g, in Eq. (6). Usually g, and consequently
Oxe» Sye, andS, are divided into exchange and correlation
contributions

Oxc

=Y
~tno

2l
Y

Oxe(M's, & KeU) = 0x( £, Kel) +9c(rs, £ Kel), (@)

where the exchange functiog, is obtained by putting a
Slater determinant of Kohn-Sham orbitalsr of Hartree-
Fock orbitals into Eq.(1). For a uniform electron gas, both 1. 1. Upper panel: our nonsoscillatory model for exchange in
Kohn-Sham and Hartree-Fock orbitals are plane waves, anfle uniform electron gas is compared with the exact Hartree-Fock
gy is a simple function ofkru. The exchange-only pair- curve. Note thag, is ther—0 limit of g,.. Lower panel: low-
distribution function does not depend explicitly @g, SO  density limit of our analytic model for the exchange-correlation
that g,=0y: the explicit dependence ong only appears pair-distribution function of the uniform gas. In this limit, the model
when Coulomb repulsion is taken into account in the wavey,. is almost exactly independent of the relative spin polarization
function.

Both g, andg, have long-range oscillations. At high den- tion (Sec. IV). In Sec. V, we discuss our results for exchange
sities, these are Friedel oscillations; at low densities, theand correlation over the whole density range. At metallic
represent the incipience of Wigner-crystal order within thedensities, we compare our analytic model with the available
liquid phase of uniform density. These oscillations are enerquantum Monte Carl6QMC) data®!’finding fair agreement
getically unimportant in the following senéé model which  (Fig. 3). We also computed, corresponding to the dynamic
omits them but is constrained to have the same energy intdecal-field factors of Richardson and Ashcr8ftRA), in or-
gral can correctly describe the short-range correlation whilaler to see better how our model averages out the long-range
averaging out the oscillations of the long-range correlationoscillations(currently not available from QML In this way,
The energetic unimportance of the oscillations is probably ave are also able to show the effect of a dynamic local-field
consequence of the long-range and “softness” of the Coufactor on the long-range oscillations, by comparing the RA
lomb interaction. result with the RPAcorresponding to zero local-field facior

Available analytic modefs'? of g, andg, for the uniform  long-rangeg, (Fig. 4). At high density, we find that our
electron gas break down at high* (rs=0.1) and low ¢,  model is in very good agreement with exact calculattdh$
>10) densities. In this paper, we present a model for théFig. 5, and at low density it does not break down and
nonoscillatory part ofy. (and hencey.) which fulfills most  shows the expectegl dependencéFig. 1). We also compare
of the known exact properties and is valid over the whole(Fig. 6) our model with previous modefs:? and discuss the
(0<r <) density range and for all spin polarizatiofs qualitative effects of correlatio(Fig. 7). In Sec. VI, we dis-
Our model is built up by interpolating between the short-cuss how to extend our scheme to the spin-resolyéd ( |
range part recently computed in Ref. 15 and the long-rangandT |) pair-distribution functions. The wave vector analysis
nonoscillatory part which is exactly given by the random-of the kinetic energy of correlation corresponding to &ur
phase approximatidfi (RPA). Exact smalls and larges ex-  and'S, is presented in Sec. VII. Section VIl is devoted to
pansions are recovered up to higher orders with respect teonclusions and perspectives.
currently available modefs'? All the parameters which ap-
pear in our interpolation scheme are fixed by exact condi-

0 05 1 15 2 25 3 35 4
u/rg

II. EXACT PROPERTIES AND LIMITATIONS OF

tior)s. We_ also build up a new nonoscillatory exchargge PREVIOUS MODELS
which fulfills exact short-range and long-range properties up
to the same order as ogg. does. We list below most of the known exact propertiesgqf.

The paper is organized as follows. In Sec. II, we list theand g, for the 3D uniform electron gas. Equatigfh) im-
known exact properties @, andg,., and the major limi- plies the positivity constraintg,.=0 and the particle-
tations of the models of Refs. 2 and 12. We then present ouwronservation sum rule, which can be divided into exchange
nonoscillatory model for exchand8&ec. Ill) and for correla- and correlation
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o , smallk expansiod’ of S.. Since, whenk—0, the
fo dudmun(gy—1)=-1, (8)  exchange-only static structure fac®y is equal to
* “ — _ 3 2/3 2/ K °
f dudmu?n gC:f dudmu?n gC:O_ (9) Sx(g,k—>0)—§[(1+§) +(1-90) 3]k__ 16‘(3,
0 0 F F

, , , . (15
With the Coulomb interaction @/ the exchange function ) ) )
0y, the correlation functiorg,, and its coupling-constant there must be a linear term and_a cubic term in the .small-
averagedy. integrate to the exchange energy, to the po-  €xpansion of the correlation static structure facdpwhich

tential energy of correlation, , and to the correlation energy cancel with the exchange. In real space, these terms corre-
€., respectively, spond to long-range tailsu~* and <u~, respectively
The nonoscillatory exchange-correlation pair-distribution

1 (> ,1 function has a long-range t41°° <u~8. As for more general
EJ’O dudmu® n(gx—1)=e(rs.0), (10 gensities, the exchange-correlation hole is more localized
around its electron than the exchange h@ed thus better
1 [ 1 described by local or semilocal approximations for nonuni-
EL du4wuzan Oc=v(rs,{), (12)  form densities The high-density limit of the random-phase

approximation(RPA) exactly describé$ the nonoscillatory
1 (e 1 long-range part ofl,., recovering Eq(14) through ordek?.
_f dudmu?=ng.=e.(rs,?). (120  The absence of thie® term in the smalk expansion ofS,
2Jo u was demonstrated for thie=0 gas by using exact frequency-

7
For further discussion of the exchange hole densitJTloment sum rule§’ The same arguments should hold for

n(gy— 1) surrounding an electron, the correlation hole den_the {#0 gas. Notice that the cancellation of tkéterms is

: N " obtained from beyond-RPA consideratidis.
sity n g, and the generalization of Eg®8)—(12) to nonuni- . . .
form densities, see Refs. 6 and 20. Armed with these exact constraints, we can discuss the

The short-range behavior of is determined by the @/ strengths and weaknesses of previous analytic models, which
Cc

) ST Ske B unlike our present model break dot#ri*outside the metallic
Coulomb repulsion, which gives rise to the cusp condftton density range %r.<10. The Perdew-Wang modeivas

dg,. largely based on first principles, plus limited fitting to quan-
du =0xdu=o0- (13)  tum Monte Carlo data. This model introduced the high-
u=0 density limit of the RPA as the long-range componeng gf.

The function g,. satisfies a modified cusp conditfol?  But that limit was modelled crudely, leading to violation of
which can be derived from Eq$3) and (13). A quite accu- the particle-conservation sum ru{end thus to failure for
rate estimate of theg and ¢ dependence of the short-range 's=0.1). The model did not incorporate the plasmon sum
expansion coefficients dajf,, andg,, has been recently ob- Tule, and produced an incorrect > nonoscillatory long-
tained by solving a scattering problem in a screened Coutange limit forg,.. The positivity constraint was violated at
lomb potential which describes the effective electron-low densities, a problem evaded by switching over to a dif-
electron interaction in a uniform electron gas—the extendederent analytic form for>10. In this model, the spin reso-
solutiort® of the Overhauser mod#&t.[Classical electrons at lution of g,., even in its revised forn is less reliable than
zero temperature would hagg|,—o=0, but nonzero values the totalgy..
have a nondivergent potential-energy cost according to Eq. The model of Gori-Giorgi, Sacchetti, and Bach&atas
(11) and for quantum mechanical electrons lower the kinetidased upon extensive fitting to spin-resolved quantum Monte
energy associated with the swerving motion needed to keegarlo data for{=0, and did not address nonzefo Their
two electrons from colliding. Thus the right-hand side of Eq.model forg,, unlike that of Perdew and Wang, was analyti-
(13) is nonzero, except in the low-density limit. It is simi- cally Fourier transformable t8,.. It incorporated the par-
larly nonzero for a gas of classical electrons at an elevateticle conservation and plasmon sum rules, and the correct
temperaturé’] u~ 8 long-range limit forg,., but did not build in the impor-
The long-range part of the nonoscillatayy, corresponds tant high-density limit of the RPA for large, leading to
to the smallk behavior of the static structure factor, which is failure for r,<0.8. Moreover, smali+ errors of the Monte
determined by the plasmon contribution, proportionaktp ~ Carlo data were transferred into the motfel.
and by the single-pair and multipair quasiparticle-quasihole
excitation contributions, proportional tok® and k4, IIl. NONOSCILLATORY EXCHANGE HOLE

respectively2° _
We present here our nonoscillatory model for the ex-

k? 4 change hole. This new model satisfies exact short-range and
Skelr's, ¢, k—0)= 2w,(r9) +0O(k%), (14 jong-range conditions up to the same order as our
s correlation-hole mode(Sec. IV) does.
whereaw,(r¢) = y/3/r3 is the plasma frequency. Equatitiv) The exact exchange-only pair-distribution function for the

is called the plasmon sum rule. There is kibterm in the  uniform gas is

165118-3
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1
Ox(& keu) =1+ S {(1+ DAL+ )M Keul+(1- 02

XI[(1— ) *keul}, (16)

where

X )___(w) | an

v
Our nonoscillatory J(y)) is parametrized as

s 4

2
—e A 1+AYZ+

]

Ay=—1
M= 4

+e P’ (B,+Cy2+E,y*+F,y°). (18)
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electrons of parallel spin cannot come together, since the
antisymmetry of the wave function makes this probability
vanish, (v) our g, has the exact second derivativeuat 0,

and (vi) the information entropys[ —J(y)]

S-3(y)]= fowdyztwsz(y)In[—J(y)] (21)

is maximizec?®° S of Eq. (21) is not a thermodynamic en-
tropy but a mathematical one whose maximization ensures
that the analyticJ(y) has no structure beyond that imposed
by the exact constraints used to construct it. The parameter
values areA,=0.77, B,=-0.5, C,=—0.08016859,D,
=0.3603372,E,=0.009289483, an&,=—0.0001814552.

Our nonoscillatory modey), is compared with the exact
exchange at=0 and{=1 in the upper panel of Fig. 1. In

This model is similar in spirit, but not in detail, to those of the first panel of Fig. 4, the exchange haglg-1 is multi-
Refs. 2 and 28. The first term of E@.8) achieves the correct plied by (u/r¢)* in order to show how our modé$olid line)

average long-range behavior 3y~ * as y—o, and is

averages out the oscillations of the exact exchange hole

damped out at smajl by the first square bracket which var- (dashed ling

ies fromy® asy—0 to 1 asy—. The second term then
The Gaussians
smoothly blend the two terms, but are not motivated by any

builds in the correct small- behavior.

IV. NONOSCILLATORY CORRELATION HOLE

physical model. The analytic forms and linear parameters in - Following Perdew and Wanigwe write the nonoscillatory
Eq. (18) are convenient for constraint satisfaction. The sepapart of the correlation hole as the sum of a long-range part
ration into long-range and short-range parts, although someind a short-range part, somewhat as in @8):

what arbitrary, could be useful for the construction of new
density functionals. The spherical Fourier transform of

),

n(ky)
ky

J(k)—f <J(Y)>y dy, (19

is also analytic and is reported in Appendix A. The layge-

expansion of Eq(18) is

9
(Iy—=)==7y" “+0(e™), (20

while the nonoscillatory average of the exd¢y) also con-
tains a— 2y~ term (and no other long-range tejnSuch a

_¢ I's 1(0) _d 2 2
(9e(rs, £ KeU))=— (e 1- 1+dx
d? o
+ x4 [+e 9 ex" L, (22
2 n=1

where k= (4/37)(97/4)*3, p=[(1+ )+ (1—-)?)/2, x
=keu/ ¢, andv= ¢« \rkeu. The six linear parameters,
depend on bothg and ¢, while the nonlinear parameter
only depends or.

The first term in the right-hand sid®HS) of Eq. (22) is

the long-range part of ouy.: the functionf,(v) is a new

term was included in the models of Refs. 2 and 28, but withParametrizationsee Sec. IV A of the RPA limit found by
a coefficient wrong in both sign and magnitude. As explalnedNang and Perdett and displayed in Fig. 2 of Ref. 2. We
in Sec. II, the exact nonoscillatory correlation hole has long-multiplied f,(v)/(ksu)? by a cutoff function which cancels

4 6

range termsy * andy~

which exactly cancel with the

its smallu contributions, so that the long-range part of our

exchangéd??>?" so that the exact nonoscillatory exchange-g, vanishes through order* and does not interfere with the

correlation hole has a long-range taf® «u=8 which is

purely correlation. However, as detailed in Sec. IV A, our

nonoscillatory correlation-hole model is built withouuia ®

short-range patrt.
For modeling the short-range part, corresponding to the
last term in the RHS of Eq22), we use our recent results

long-range term, since this choice preserves a simple anobtained by solving the Overhauser motfalyhich allow us

useful scaling. We have thus also set yhé term to zero in

to fix therg and ¢ dependence of the linear parameters

our nonoscillatory exchange-hole model, in order to have am,, andcs (Sec. IV B. We then use the remaining three

exchange-correlation hole with the exact® long-range be-
havior.

The six parameterd,, throughF, are fixed by requiring
that (i) the particle-conservation sum rule is fulfilled,) our
Ox gives zero contribution to the plasmon sum ruyl&) our
gy recovers the exact exchange enefg), our g, is exact at
u=0 in obedience to the Pauli principle in real spdteo

linear parameters,, cs, and cg, to fulfill the particle-
conservation sum rule and the plasmon sum rule, and to re-
cover the “exact” correlation energiSec. IV Q. Finally, the
nonlinear parameted(¢), which determines the “mixing”

of long-range and short-range contributions, is fixed by im-
posing the positivity constraint og,. whenr,—x (Sec.

IV D).
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A. Long-range part ot
As discussed in Refs. 16 and 2, the long-range-(e) -0.01
part of the nonoscillatory correlation hole can be obtained s 0.02
from the random-phase approximation by computingrits o -0.03
—0 limit. One finds 0.04 1\
-0.05 |\
3 0.06 |
— f1(v) 0.0
n<gC(rSI§1kFu)>_>¢3(¢kS)2 27 (23)
47rv 2
where ks is the Thomas-Fermi screening wave veckqr FIG. 2. The functionf(z,0) given in Ref. 16. The exact calcu-

= k\r kg . The functionf,(v) is the spherical Fourier trans- lation (RPA) is compared with the present parametrization and with
form of the functionf(z,0) given by Eqs(29), (34), and(36)  the one of Perdew and Warigef. 2 (PW92.
of Ref. 16,

3 and 4 do not suggest that this choice introduces any sig-

_ » sin(vz ificant i Is for th t h
fl(U):zvsz dz 21(2,0) n( ), (24) nificant error into our models for the separate exchange and

vZ correlation holes.
i . . i We thus parametrizé,(v) as follows:
where z=Kk/ ¢k is the proper scaled variable in reciprocal

space. The small- and largeexpansion off (z,0) is
p w p ( ) a0+b2U+all)2+a2U4+a3U6

fi(v)= : (28)
343 ! (02 +b2)*
f(z—0,0=— —z+—2°+0(2%), (25)
77 77 With respect to the parametrization given by Perdew and
Wang? our Eq.(28) has the advantage that it is analytically
2(1=In2) _, , Fourier transformablésee Appendix B so that the particle-
f(z—=,0=- 2 z *+0(z). (26) conservation sum rule and the plasmon sum rule can be eas-

ily imposed.(They are not fulfilled by the Perdew and W&ng

Equation(26) gives the high-density limit of the correspond- parametrization.After imposing on ourf,(v) all the exact
ing correlation energy properties plus the vanishing of tizé term in Eq.(25), we
are left with one free parametdr, which is fixed by a best fit
(1-In2) 3 0 to our RPA datd® All the parameter values are reported in
;— $(%Inr+0(r), (@7 2o : .
T ppendix B. The functionf(z,0) corresponding to our pa-
rametrization[see Eq.B1)] is compared in Fig. 2 with the
which is exact af=0 and 1, but is slightly different from RPA result and with the Fourier transform of the Perdew and
the exact result for & <1 (see Refs. 2 and 16 for further Wangd (PW92) —1(0)_

detailg. The smallz expansion off(z,0), Eq.(25), fulfills
the particle-conservation sum rylé(z=0,0)=0], contains

€(rs—00)=

a linear term which cancels with the exchar@ad corre- B. Short-range part
sponds to a long-range tailu—* in real space, see Sec), |l Our g, has the small+ expansion
and fulfills the plasmon sum rulexactz? coefficient, see
Eq. (14)]. The z° term in Eq.(25), if it does not vanish, o Keu keu ) 2
produces ai~ ® contribution to the correlation hole at large (gey=c1t 027 +(—cyd+cy) 7) +0(ud).
As said in Secs. Il and lll, the long-rangai o) (29)

nonoscillatory behavior of the exact exchange hole contains
u™* and u™® contributions which are cancel€**" by  In order to recover the short-range behavior obtained by
similar contributions to the exact correlation hole. When wesolving the Overhauser mod€lwe require

use the high-density limit of Eq23) for the long-range part

of the correlation hole, we automatically achieve cancella- (1—¢?)
tion of the u™* terms. But to cancel the ® terms ing, ¢=—>

—1, we would have to replacé,(v)/v? in Eq. (23) by
f1(v)/v?+rgph(rg,Z,v), wheref,(v)/v? has nov° con-

[ajt(rlh—1], (30)

13 2 13 1
tribution andh is proportional tav ~® with nor or £ depen- Cp= ¢(i) - A+rH™+A-0 ﬂg{i(rg),
dence at large. The extra ternr s¢h vanishes in the high- o7 2 2

density limit for a giverw, and is unknown. Since we want (31)
to keep for ourg, the simple form of Eq(22), but we also o3 83 83

want to have the correct long-range behavier( ) for 2 — (1+0"+(1-0) q
Ore, We decided simply to set the © terms to zero in both 3~ ¢\ gy 2s:d)- 20 Teud,
our exchangéSec. Ill) and correlation-hole models. Figures (32

165118-5
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wherer['=2ry/[(1+)¥*+(1- )", anda}', a}', and Ts=2{(30m—128)¢,—8\/mC,o+ (39— 128)C,
a,(rs,{) are given by Eqs(36), (37), and(46) of Ref. 15. In
this way, the modified cusp condition is exactly satisfied. ~144/mAS(a) + 16JmAP(a)

— 25 AR(a)— E]}/(512— 165m), (41)

C. Sum rules

We want our correlation hole to satisfy the particle- Co={/m(180m— 624)C, + (1507 — 512, + \m(135m

conservation sum rule and the plasmon sum rule, and to re-
cover the “exact” correlation energy. Our new parametriza-

tion of the functionf,(v) satisfies the particle-conservation —1024)—480\/;[AR(01)— E]}/[6(1657—512)].
sum rule, and recovers the exact plasmon coefficient and the (42)
Inrg term of the resulting correlation energy. Thus, we only
have to require that the remaining part of @yrgives zero
contribution to(i) the particle-conservation sum rule afiid D. Positivity constraint in the low-density limit
the plasmon sum rule, andi) recovers the correlation en- The nonlinear parameter can be fixed by imposing the
ergy beyond the Ins term. In this way we have three linear condition thatg,, remains positive when,—c. The short-
equations for the three parameters cs, andce! range behavior imposed on ogg ensures that the small-
expansion of the corresponding,. has coefficients which
6 _ = ) are always=0 through orden?, and which become zero in
> Cnf e "t""ldt=ASa), (33  the low-density or strongly correlated limit. We have
checked that, if we want to have a positigg, for all den-
sities, we only need to require that also thré coefficient

—432)C4+(3072- 1260m)AS @) + AP( ) (360m

6 .
~ [ 2 (equal toc,—d c,) becomes 0 when,— o0, according to the
2‘1 C”fo e 1T dt=AP(a), (34 cusp condition for parallel-spin pait$:*?'We thus have an
equation ford(¢):
6 .
~ (= lim cy(rg,0)—d({)cy(rg,L)=0. (43
D cnf e t"dt=—AR(a)+E, (35) B 2s
n=1 0

Equation (43) is rather complicated since, also depends
where ¢,=c,/d" D72 t=\dkeu/¢p, A=é¢rd/x, a  Nonlinearly ond. However, it can be solved numerically for
= ¢?k(r¢/d)? and each{, and, when the Perdew-Watigarametrization of the
correlation energy is used in E@9), the result is very well
fitted by

2

S(a):j:f_l(at)e’ 1+t2+%t4)dt, (36)

d({)=d(0)[(1+ )%+ (1-¢)?P-1], (44)
with d(0)=0.131707.

P(a)=f fl(at)e 2 1+t2+ 1o dt, (37
0 2 V. RESULTS FOR THE EXCHANGE-CORRELATION
HOLE
_ [~filat) 2 , 1, In the next three subsections we present and discuss our
R(a)= fo o |17e (1+t ot }dt’ 38 results for the nonoscillatorg,, g., andg,. in the whole
(0<r¢ <) density range. We have used the correlation en-
ergy e. as parametrized by Perdew and Wahgyhich was
_2rd 9_77 213 (39) built with the quantum Monte Carlo data of Ref. 3 as an
- 342\ 4 €clls,{)- input. It is, however, straightforward to build into our equa-

tions anab initio €, for the 3D uniform gas when availabig,
The functionsS(«), P(a), andR(a) can be obtained ana- Showing that the exact constraints suffice to deterngpe
lytically and are reported in Appendix C. The parametgrs without the need for any “numerical experiment.”
cs5, andcg are then equal to
A. Metallic densities

E4={1OO\/;(377—8)51+ (69077—2048)EZ+ \/7_7(22577 In the six upper panels of Fig. 3 we compare our analytic
- g. with the quantum Monte Carl@QMC) data of Ceperley
—672c3+(8192-2100m)AS (@) + AP(a) (6007 and Aldef (CA) and of Ortiz, Harris, and Ballorié (OHB)

_ _ . forrg=2, 5, and 10, and fof=0 (left) and{=1 (right). In
204&+960\/;[AR(Q) E]}[4(512-165m)]. the {=0 case, we also repogt. as obtained by the dynamic

(40)  local-field-factor model of Richardson and AshctBftRA)
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FIG. 3. Coulomb correlation contributiom, to the pair- = 0
distribution functiong, for the uniform electron gas for the para- rg=10
magnetic ¢(=0) and ferromagnetic {=1) state. Our analytic 0.1 | RPA —— 1
model is compared with the diffusion quantum Monte Carlo results — "1 5 EIS 7 8

of Ortiz, Harris, and BallonéRef. 17 (OHB), and of Ceperley and 0 1 2 3
Alder (Ref. 3 (CA). The pair-correlation function corresponding to
the local-field-factor model of Richardson and Ashcrgkef. 18
(RA) is also shown. In the two bottom panels, the low-density limit
of our g, is reported.

u/rg

FIG. 4. Upper panel: long-range part of the exchange hole. Our
nonsoscillatory model is compared with the exact exchange. Second
and third panel: long-range part of the correlation hole. Our
nonoscillatory model is compared with obtained from the Rich-
ardson and AshcrofRef. 18 (RA) local-field factor. In the lowest
panel the random-phase-approximati®PA) result forr =10 is
also shown. All curves are for the=0 gas.

via the fluctuation-dissipation theorefas in Ref. 35. The
RA model yields very accurate correlation energief§ ,¢
=0),*® and we find that the RA; is in very good agreement
with QMC data except at small. The limit u—0 is not
correctly included in the RA parametrization of the local-
field factor, which violates the Pauli principle in real space.we can thus compare our modolid line) with the RA

We see that our model is in fair agreement with QMC dataresult(dashed ling This is done at =2 and 10. The many
for the paramagnetic gas. In the ferromagnetic case, whemxact properties imposed on the RA local-field factor and the
the pair-correlation function shows stronger oscillations everiirst three left panels of Fig. 3 suggest that the long-range
at intermediate densities, the agreement is less satisfactopart of the RAg.. is very reliable and that the oscillations are
(as in the model of Ref.)2 This is not surprising, since our probably accurately described. One clearly sees in Fig. 4
model does not take into account the energetically unimporhow our model follows the first oscillation and averages out
tant oscillations: it only includes the minimum number of the others. In the lowest panel of Fig. 4, the long-range os-
oscillations needed to fulfill the sum rules. This is evident incillations of the random-phase approximatiRPA) g, at
the second and third panel of Fig. 4, whegyeis multiplied  rs=10 are also shown. At large;, the RPA oscillations of
by (u/rg)*. In this way, the long-range oscillations are am- g, tend to cancel the ones gf, (first pane), while the effect
plified and become clearly visible even at metallic densitiespf a dynamic local-field factor clearly inverts this tendency:

165118-7
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re—0
3 3
this work
_exact -———-
3 4
0 L
FIG. 5. Coulomb correlation contribution to the pair-distribution 041t
function for the uniform electron gas for the paramagnetie Q) S
and ferromagnetic{=1) state in the high densityr {—0) limit. -0.2
The regult from our analytic model is compared with the exact 03 /; this work ]
calculation of Refs. 13,19. PW92 -
GSB --—---- -
-0.4 ; ;
the oscillations of the RAy. (second and third panebre 2 A 1
almost in phase with the oscillations gf. We interpret this 151/} o =100
to mean that the RAy, of the low-density uniform electron Tri \ =
gas is building up an incipient Wigner-crystal-like order of g 0571 P
the other electrons around a given electron. 0 e e work 1
05 ./ PWe2/10 — -
al ./ GSB - -]
. . PW92-App —
B. High density 0 1 o 3 4
In the high-density limit,g.=2g. goes to zero, so that urg

Oxc—0x. It has been showrt®%that in thers—0 limit
g./rs remains finite and goes to a well defined function of
u/rs, which has been computed exactly® In Fig. 5 we

FIG. 6. Comparison of the present work with the models of Ref.
2 (PW92 and of Ref. 12(GSB) at high densitieqfirst panel,

. ) ) . metallic densities(second pangl and in the low-density regime
compare this exact calculatiddashed lingwith our model (third panel. In ther ;=100 case the original PW92 curve has been

. . _ 75 _ _
(solid line), computed at =10"", for (=0 and{=1. We jyided by 10, and the low-density form proposed in the Appendix
see thati) our model does not break downs—0 and(ii)  of Ref. 2(PW92-App is also reported. All curves are for the para-
there is fair agreement with the exact result. Previousnagnetic ¢(=0) gas.

model$'*? for g, usually break down ats~0.1. Featurdi)

is due to the new parametrization df(v) which exactly

fulfills the particle-conservation sum rule, while featuiig In Fig. 6 the present model is compared with the param-

is due to the short-range behavior taken from Ref. 15, whictetrizations of Perdew and Wah@W92 and of Gori-Giorgi,

includes the exact high-density limit of the short-range coefSacchetti, and Bachelét(GSB). In the first panel, we see

ficients. that in the high-density regime {=0.01) the PW92 model
starts to break dowH:®and that the GSB parametrization is
completely unable to describe such high densitigsis is

C. Low density due to the wrong .—0 behavior of the GSB on-top pair

In the low-density or strongly correlated limit, we expect density) At rs=2, well inside the metallic regime, we see
that g, (equal tog,, in this case does not depend otj, (second panglthat the presen_t work is very close to the
since in this limit the Pauli principle in real space becomes®W92 model and slightly deviates from the GSB curve at
irrelevant with respect to the Coulomb repulsion. In theW/rs=1. Finally, in the third panel we show the total pair-
lower pane| of F|g 1 we report our model BJ: 105 for dlStrlbUtlon fUnCtiongXC atrS: 100: the PW92 model in its
three different values of the spin polarizationWe see that Original form completely blows up, while the GSB model
the ¢ dependence of our low-density,. is indeed very becomes_ negative at'rs=1 bL_Jt is still “reaso_nable." The
weak, and that, unlike previous parametrizatiofi,our low-density form proposed in the Appendix of Ref. 2
model never gives rise to an unphysical negative pair(PWQZ-_App is also reported: it corresponds to an exchange-
distribution function. Figure 1 also offers a view on the samecorrelation hole narrower than the present one.
scale of the extreme high-density limit gf. (equal to the _
exchange-only pair-distribution function, first panahd of E. Features of the “correlation factor”
the extreme low-density limitsecond pangl We see how To better see the effects of correlation, we define a “cor-
the ¢ dependence dij,., which is very strong in the,—0 relation factor”
limit, is cancelled by correlation in thes—oo limit. The i) _
low-density limit of ourg.=g,.—0dy is reported in the two VA ~ Oxe™ 4 9c
lowest panels of Fig. 3 fot=0 or {=1. Kxe(rs, ¢ Keu) = 9, —1 =1t Oy— 1 49

D. Comparison with previous analytic models

165118-8
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of linear parameters,, chosen to satisfy exact constraints on
n,.. The result would presumably be a model for exact ex-
change and approximate correlation compatible therewith.
The screening of the long-range part of the exact exchange
hole is essential for a proper description of molecdfes.

VI. SPIN RESOLUTION

We can define spin-resolved pair-distribution functions
which describe spatial correlations betweeh | |, and{ |
electron pairs. Their normalization is such that the spin-
averagedy,. of Eq. (1) is equal to

2 2

ﬁ) gm+(5 -

2 xe 2 2
While the spin resolution of the exchange-only pair-
distribution functiong, is well known? the correlation part
is much more delicate, and an accurate analytic representa-
tion is only availabl& for =0 in the density range 0.8
<r.<10.

The model presented in Sec. IV can be used to build up
spin-resolved correlation functions provided that the spin
resolution of the input quantities is known. The input quan-
tities are (i) the RPA long-range partji) the short-range
coefficients from the solution of the Overhauser model, and
(iii) the correlation energy. Once these input quantities are

which morphs the exchange hole into the exchangeknown. in fact, one can build, sag, ', starting from the

correlation hole, and is displayed in Fig. 7. We must ofS@me Eq(22), using the RPA | long-range part, and putting
course use nonoscillatory models here, since the egact the Tl short-range coefficients into Eq80)—(32), andel!
—1 has nodes which would create singularities in @).  into Eq.(39). Finally, the positivity constraint of; in the
Figure 7 shows thagxc—>KX=l in the r—0 limit. For low-density limit can be applied to find; ({), as done in

typical valence-electron densities, we see that correlation er€C. IV D.

— The first point is thus to see whether the quantities
hances or degpeps the hole,(>1) around an electron for (iii) are available in their spin-resolved contributions. The
u/rg=<1.5, while it screens out the long-range part of the

. RPA Iong-range part is easily Spin resolved for meo
6
hole. Because of the exact cancellation of the' andu 1214 \hile it inr uti in t rtially larized

ac o gas;
long-range terms between andg,—1, Ky at largeu goes  gas is less trivial. The short-range coefficients from the Over-
to 0 asu™*. Forrg>2, K,. can be negative in the range hauser model are available 4, ||, and 1| separate
1.5<u/rg=3, corresponding to a positive peak gy.—1. contributionst® The correlation energy represents the major
We can think ofK,(rs,¢,keu)/u as an effective, density- Problem: at{=0 it can be easily spin resolved in the high-
dependent screened electron-electron interaction whose e&nd low-density limits, while at intermediate densities the
change energy equals the exchange-correlation energy of tii@st estimate is probably the one given in Ref. 12. Almost
Coulomb interaction . nothing about the spin resolution ef is known for the{
The correlation factor has a possible applicatiohto the ~ #0 gas, except in the extreme low-density limit, when the
modelling of exchange and correlation in systems of nonunisystem becomes independent.
form density. First we note that the exchange-correlation en- Here, we show results fay.’ in three cases: the extreme
ergy is fully determined by the spherical averagg(r,u) of  low-density limit, the high-density limit of the paramagnetic
the holet gas, and thes=2, {=0 case. The low-density limit must be
40 treated first, since it is neceisary to deterndpg {) through
_ [ 9 the positivity constraint oy, ; whenrg— .
nxc(r,u)—J 47 Mecl(r,F + ). (46) When /=0, the spin resolution within RPA is very
simple: up-up and up-down interactions contribute the same
amount to correlation®'*The long-range part of o' can
Ne(F,U) = Kio(T,u)Ny(1, 1), (47)  thus be built using the functiofy(v) of Eq. (28) with the
o same parameters of Appendix B. While the spin-averaged
wheren,(r,u) is the exact exchange hol€,. for a nonuni-  nonoscillatory long-range behavior computed within RPA is
form density could be constructed from E¢5) by inserting  also exact beyond it at all densities, its spin resolution is
into Eq. (22) (or a simplification theregfanr-dependent set exact beyond RPA only when,—0.3¢ We keep on using it

2
Oyt

Oxc™ X glé . (49

FIG. 7. The correlation factoK,. defined in Eq.(45) for the
paramagnetidupper pangland ferromagnetic¢lower panel uni-
form electron gas.

A possible “correlation factor modef? for n,(r,u) is

165118-9
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1.2 0
1
0.2t
0.8 »
2206 | eg 04 '+
04l 06| this w%rlg
0.2 08y QMG -
0 0 05 1 15 2 25 3
) X : /1
0 1 2 3 4 Wl
u/rg FIG. 10. Spin-resolved Coulomb correlation contribution to the

S ) ) pair-distribution functions for the paramagnetic uniform electron
FIG. 8_. Up-down pall’-.dISt.I’Ib.UtIOI’] function for the uniform elec- gas at density.= 2. The present model is compared with the quan-
tron gas in the low-density limit. tum Monte Carlo(QMC) data from Ref. 17 and with the result

) S o obtained from the local-field factors of Richardson and Ashcroft
even in the extreme low-density limit, since it is the only (ref. 18 (RA).

way to build up a spin-resolvegl, starting from our model.

As we shall see, the results obtained are reasonable, ang, and with the values that we have obtained from the Ri-
justify our choice. Wherrs—, we expect the statistics to chardson and AshcrofRA) local-field factors® We see that
be energetically unimportait,so thate;.=e;c=€,;=¢€x.  our result is reasonable, but does not accurately agree with
We thus finde.' = ;.= — 0.892t, where the numerical co- the QMC data. In this respect, the RA results are much better
efficient corresponds to the Perdew-Wang parametrizition for u/r¢=0.7, while they blow up in the short-range part,
of €.. The positivity constraint oglé gives since they do not satisfy the Pauli principle in real space. As
said, the spin resolution is very delicate, so that an analytic
di ()=d; (0[(1+)P+(1-0**-1], (49  model is very difficult to build up. The best analytic repre-
with d;(0)=0.0885717. The results fagl. are shown in SEMtation ofg}' andg{' at metallic densities is probably the
Fig. 8, atr,=1CP, for (=0 and{=1. one of Ref. 12, which was built to interpolate the QMC data

For the high-density limit of the paramagnetic gas, all theOf Ref. 17 accurately.

spin-resolved input quantities are exactly known. It is thus
the best case to test our model. Whep-0, the spin- VIl. WAVE VECTOR ANALYSIS OF THE KINETIC
resolution from RPA is exact also beyond it: the long-range ENERGY OF CORRELATION

part of gl is in this caseexactlydescribed by Eq(28) with

) " .. Wave vector analysi8 is usually a study of the static
the parameters of Appendix B. The correlation energy, in this
|imitp12’26 is simply ggual to the spin-averaged Cogyelationstructure factor of Eq(6). The wave vector analyses of the

. correlation energy. and of the potential energy of correla-
energy of EQ.(27) with { set to zero. The short-range . c . L
coeff?g/ients (fqrérr? Ref. 55 include the exact spin—resolvedI lon v have oftgn be.en reporté6?5'38wh|le the kinetic en-
high-density limit of the=0 gas. The so-obtainegl.’ is ergy of correlationt; is much less studied. We can decom-

shown in Fig. 9, together with the exact calculation from posetc(rs,¢) into contributions from different wave vectors

Ref. 19, which is, in this case, equal to the RPA result. WeOf a density fluctuation

find very good agreement. 3 e
At metallic densities, we used the spin-resolegdor the t(rs,l)= Ef dq o?7.(rs,4,9), (50)
(=0 gas from Ref. 12, and the RPA spin resolution for the 0

long-range part. In Fig. 10, we report our resultsg& and h Kk , _ h i
[T=2g,—gl' atrs=2, together with the QMC data of Ref. WNEr€d=K/Ke. Sincets= €. v, the wave vector analysis
of t. is just the difference between those franduv.:

_ 2Ke [Sulrs £,) = Sulrs . £,0)]

7’C(r51§1q)_ 377 q2 (51)
The smallg limit of 7. can be obtained by the plasmon sum
rule
4 3
urs T(rs.£,0—0)= 1. %%+ 0(g?), (52

4

FIG. 9. Up-down Coulomb correlation contribution to the pair- d its leadi is ind d d
distribution function for the paramagneti¢=0) uniform electron and Its lea 'ng_ term Is indepen er,‘t Qf as expected from
gas in the high densityr(—0) limit. The result from our analytic Ed- (14). To write down the larger limit of 7. we need to

model is compared with the exact calculation of Ref. 19. expandS, andS; for large arguments. We know tH&g263
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0.16 i work — Heren, is the correlation contribution to the momentum dis-
T o012 | RA - tribution n.(q)=n(q) —ne(q), and ny is the Fermi step
T o . ! . .
= function. The leading term in the smajl-expansion of
¢ 008} k2g°n. is proportional tog?, and is thus rather different
T_; 0.04 from the corresponding behavior @t, Eqg. (52). On the
= other hand, in the largg-limit we have®
0 L
0 05 1 15 2 25 3 8 Oy (rs,{=0,u=0)
k/kF kéqznc(rsrgzoaq_)w):_z 6 !
9w q
FIG. 11. Wave vector analysis of the kinetic energy of correla- (59)

tion atrg=2 andr,=5 for the paramagnetic gas. The function
T.(rs,¢,K) is defined in Eq(51). The present work is compared @ behavior very similar to E¢(56). This is not surprising,
with the result obtained from the Richardson and AshdiRéf. 1§  since the larget limits of both S, andn, are determined by
(RA) local-field factor. the downward-pointing kinks in the many body wave func-
tion [producing the cusp of Eq13)] which occur whenever
4 2g,drs,l,u=0) two electrons of antiparallel spin come together. In the
+0(q7%), —0 limit, Egs. (56) and (58) become equal. A study of the
3mke q* equations linkings, andn. from the point of view of density
(53 matrix functional theory is reported in Ref. 41.

Sc(r81§!q_>oo): -

from which we can also obtain the largelimit of S,
VIIl. CONCLUSIONS AND FUTURE DIRECTIONS

= Y _ . . .

Su(rs.£,q—%)=—;+0(q 6, (54) The known exact constraints summarized in Sec. Il, plus
the random phase approximation for long-range-(ec) cor-
relation, the extended Overhauser mddédor short-range

where (u—0) correlation, and the correlation energyr, ), suf-
B 8/ 4\Y31 (r, fice to o!etermine the pair distribution 1‘unctig;gc(r_S ¢, Kkgu) _
y=— _(_) _f rl0x(rl,c,u=0)dr.. (55 of a uniform electron gas over the whole density range, in-
3w\ 9w/ rslo cluding the high-densityr¢—0) and low-density ((s— )

. limits, apart from energetically unimportant long-range oscil-
Through the cusp condition of Ed13), we see that the |5jipng F')I'he analytic f(?rmulasywe haF\)/e ) consgtructgd for the
largeq limit of S; is determined by the coefficient afrsin  coupling-constant-averageg),. should be useful for further
the smallu expansion ofg., a,(rs,) [see Eqs(35) and developments and applications of density-functional approxi-
(37) of Ref. 15, related toc,(rs,?) of Eq. (31) by a,  Mations for the exchange-correlation energy of a nonuniform

= (9m/4)Y3c,/¢. We thus have density. . N _
For metallic densities (2rys<10) with {=0 or 1, our

Oxc IS in good agreement with quantum Monte Catfd.In
the same density range fge=0, it also agrees with thg,
s we have calculated from the Richardson-Ashcéfodynamic
q® ' local-field factor, except neau=0 where the Richardson-
(56)  Ashcroft model was found to break dow@lthough this
. , model seems to describe the long-range oscillations cor-
In Fig. 11, we report, for the {=0 gas, for two different ocyy) |n ther,—0 limit for smallkeu, ourg,. agrees with

densitiesrs=2 andrs=5. We clearly see that the small g resyits of perturbation theory to zerééixchanggor first
wave vector contribution tg, comes from the kinetic energy ,r4ef319 in the electron-electron interaction. The static

of the long-wavelength zero-point plasmons, and that the degyrycrure factorS,. is also modelled accurately, neglecting
cay of the plasmon contribution with increasing wave vector,o nonanalytic structure of the exa8y, at k= 2k arising
k'is gradual. The corresponding result from the Richardsog,, long-range oscillation&:

and Ashcroft local field factd? is also shown. The Our formulas can also be used to spin-resaiyg into
Richardon-Ashcroft model gives a good description of plas—TT L1, and1| componentgSec. VI, when the spin reso-

mon_dlslpergon anq dampirfg. ith the d . lution of €. is known (as it is in the high- and low-density
Itis also interesting to compat with the decomposition jiitq) The additional information in the spin resolution

of the kinetic energy of correlation into contributions from might well be used to construct more accurate density func-
different wavevectors of a quasielectron. For 0, we can  ionals for the correlation energy.

write We have also examined two physically different wave

3 (e vector analyses of the kinetic energy of correlation in the

t(r.,0=0 :_f dg Pn.(re,c=0a)(kea)2 (5 _uniform electron gas, finding .them the_ same only in the lim-

s {=0=3 g olfs:£=00)(ke@)". (57 its of large wave vector and high density. We have also found

2gxc(r51§aUI0)—2M

8
Tc(rs,g,q—mo):Q
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that the decay of the plasmon contribution with increasing 1 e bz

wave vectork is gradual. f(z0)= —1 a0~ —g[48a0+ (33agb—3a;b%—3a,b®
In the future, it may be possible to construct the correla- 2zb

tion energye.(rs,{) and its spin resolutior?” (rs,{) di- —15a3b7)z+ (9a,h?— 3a;b*— 3a,b%+ 9a;b8) 22

rectly by interpolation between known limit8 without us-
ing any Monte Carlo or other data. This development would
probably not give us a bettet(r,{) than we already have,
but would provide the first spin resolution over the whole
range ofrg and¢; it would also show that the known exact b, 3*Z(b,2)
constraints are by themselves sufficient to deterngpe N mw'
The extended Overhauser mo@ahight be evaluated fof

different from zero, to test and refine the spin-scaling relawhere
tions used in Ref. 15. The extended Overhauser model can
also be made more self-consistéhtA small FORTRAN77
subroutine which numerically evaluates ogy [Eq. (22)]

can be downloaded at http://axtnt2.phys.uniromal.it/PGG/ )
and, withx>0,

+ (agh®—a;b®+a,b’—azb%) 7%

(B1)

I(b,2)= %[eszl(bz) —e "’E (-b2)], (B2)
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APPENDIX A: NONOSCILLATORY EXCHANGE give rise to a zero coefficient for th& term in the smalkz
HOLE IN RECIPROCAL SPACE expansion off (z,0), and accurately fit our RPA dataare
In reciprocal space, the exchange-only static structure fac- ao=2b8Cy,

tor is equal to

6b°
Sz ko) =11 2 1073 k a,=— [ m°Cob%+ 780 25613],
' F 37 kF(1+ §)1/3 ™
3.2:48b2/772,
+(1-)I ———| |, (A1)
e (kp(l—z)“‘”” as=12/m2,
whereJ(k) is defined by Eq(19). From our parametrization 3b*
of (J(y)) [Eq. (18)] we obtain b2=7[96ﬁ— 36b—b3Cy7?],
- 9 k N _ 2
L P L N B U 7 Co=—2(1—In2)/ 72,
J(k=—gk 1 erf(z\/A_x) 5 © 9VA,
) ) b=7.8.
+k —6A +ﬁe_k2/4Dx B_);+(:X(Lxl_k)
4A, 4 D32 4D/ APPENDIX C: ANALYTIC EXPRESSIONS FOR THE

FUNCTIONS S(a), P(a), AND R(a)

E,(60D2— 20D ,k?+k*) , .
+ The three functions of Eqg36), (37), and (38), which

16Di1/2 enter our model fog.., are given by a linear combination of
3 21 2 416 integrals of the kind
F,(840D; — 420Dk +42D,k*—k°) A2)
+ 2
64D > . yNg—X

Im(a):jo de, (Cl)

APPENDIX B: LONG-RANGE CORRELATION

HOLE IN RECIPROCAL SPACE v 1—e ¥
I;ﬁ(a)zf ———dx. (C2)

The functionf(z,0) corresponding to our E¢28) is 0 X[(ax)?+b2]™m
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We obtain forS(«), P(«), andR(«):

1 2
_ao+ ala

S(a)=acTy(@)+(ag+are®)Ti(a)+| 5

+ayat| T4 a)+ I(@)

1
Ealaz‘i‘ a2a4+ a3a6

1
—a2a4+ aga’e

+
2

1
Z8(a)+ Eagozf‘i}f’( a)+b,a

X

Ii(a)-i—Ii(a)-l— %Ii(a)

; (C3

1 2
_ao+ ala

P(a)=a9Z4(a)+(ao+a1a?)T4(a)+| 5

+a2a4 Ig(oz)-i- Ii(a)

1
Ealaz-i- a2a4+ a3a6

1
—a2a4+ a3a6
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1
Iio(a) + Eagasl}lz( a)+tba

X : (C4)

T3 a)+T5(a)+ %IZ( @)

1 2
_ao+ ala

R(a)=apZ, "(a)—(ap+a;a?®) I (a)— 5

1
+a,at Ii(a)— §a1a2+a2a4+a3a6 Zi(a)

1
- Ti(a)— —aza’Ti(a)—bya

1
—a2a4+ a3a6 2
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1 2a,+a,b?+2a,b*
0 2 14 1t a; 3
X I4(a)+I4(a)+ZI4(oz) + 1208
+b > T C5
23217 (CH

whereay, a;, a,, az, by, andb are given in Appendix B.
The integrals of the kindC1) can be written as

Ih(a)=Ty(alb)/b®, (C6)
= xg X
no- [ e
m(r) 0 L2 1] X (C7)
and starting from
o(r)= T e 1—erf(2” (C9
! 2r2 r))
~ 1 2 1
Z}(r)=ﬁe1’ El(r—z), (C9

can be computed by differentiation with respectat@ndb.
The integrals of the kindC2) can be also obtained by dif-
ferentiation with respect tb of

”/*°E,(b% a®) +In(b% a®) +

I;1Y(a)= "

., (C10

where y=0.5772156649.
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