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Pair distribution function of the spin-polarized electron gas: A first-principles analytic model
for all uniform densities
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We construct analytic formulas that represent the coupling-constant-averaged pair distribution function
ḡxc(r s ,z,kFu) of a three-dimensional nonrelativistic ground-state electron gas constrained to a uniform density
with density parameterr s5(9p/4)1/3/kF and relative spin polarizationz over the whole range 0,r s,` and
21,z,1, with energetically unimportant long range (u→`) oscillations averaged out. The pair distribution
functiongxc at the physical coupling constant is then given by differentiation with respect tor s . Our formulas
are constructed usingonly known theoretical constraints plus the correlation energyec(r s ,z), and accurately
reproduce thegxc of the quantum Monte Carlo method and of the fluctuation-dissipation theorem with the
Richardson-Ashcroft dynamical local-field factor. Ourgxc is correct even in the high-density (r s→0) and
low-density (r s→`) limits. When the spin resolution ofec into ↑↑, ↓↓, and↑↓ contributions is known, as it
is in the high- and low-density limits, our formulas also yield the spin resolution ofgxc . Because of these
features, our formulas may be useful for the construction of density functionals for nonuniform systems. We
also analyze the kinetic energy of correlation into contributions from density fluctuations of various wave
vectors. The exchange and long-range correlation parts of ourḡxc(r s ,z,kFu)21 are analytically Fourier

transformable, so that the static structure factorS̄xc(r s ,z,k/kF) is easily evaluated.

DOI: 10.1103/PhysRevB.66.165118 PACS number~s!: 71.10.Ca, 71.15.2m, 31.15.Ew, 31.25.Eb
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I. INTRODUCTION, DEFINITIONS, AND OUTLINE

The exchange-correlation pair-distribution functio
gxc(r ,r 8) of an N-electron system is defined as

gxc~r ,r 8!5
N~N21!

n~r !n~r 8!
E uC~r ,r 8,r3•••rN!u2dr3•••drN ,

~1!

wheren(r ) is the electron density andC is the many-body
wave function. Its coupling-constant averageḡxc(r ,r 8) is
equal~in the Hartree units used throughout! to

ḡxc~r ,r 8!5E
0

1

dlgxc
l ~r ,r 8!, ~2!

where gxc
l (r ,r 8) is the pair-distribution function when th

electron-electron interaction isl/ur2r 8u and the density is
held fixed at the physical orl51 density. The coupling-
constant averagedḡxc plays a crucial role in density func
tional theory, since it can account for the kinetic energy
correlation.1 In fact, n(r 8)@ ḡxc(r ,r 8)21# is the density atr 8
of the exchange-correlation hole around an electron atr .

In the uniform electron gas,n(r )5n and gxc(r ,r 8) only
depends onu5ur2r 8u, and parametrically on the densit
parameterr s5(3/4pn)1/3 and on the spin polarizationz
5(N↑2N↓)/N. The coupling-constant average is in th
case2 equivalent to an average overr s :

ḡxc~r s ,z,kFu!5
1

r s
E

0

r s
gxc~r s8 ,z,kFu!drs8 , ~3!
0163-1829/2002/66~16!/165118~14!/$20.00 66 1651
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where kF5(9p/4)1/3/r s is the Fermi wave vector. Clearly
then

gxc~r s ,z,kFu!5
]

]r s
@r sḡxc~r s ,z,y!#uy5kFu ~4!

and

gxc
l ~r s ,z,kFu!5gxc~lr s ,z,kFu!. ~5!

The high-density (r s→0) limit is the weak-interaction limit
in which the kinetic energy dominates. Relativistic effec
are important forr s&0.01. The low-density (r s→`) limit is
the strong-interaction limit in which the Coulomb potenti
energy dominates. Forr s*100, the true ground-state densi
is not uniform,3 but there is still a wave function tha
achieves the lowest energy of all those constrained to a g
uniform density.

The electron gas of uniform density is a paradigm of t
density functional theory1 for real, nonuniform electronic
systems. The exchange-correlation energy of the uniform
is the input to the local spin density approximation, while t
coupling-constant-averaged pair-distribution function is
input to the derivation of gradient-corrected functionals,4,5 to
the construction of the corresponding system-avera
exchange-correlation hole of a nonuniform density,5 and to
the implementation of the fully nonlocal weighted dens
approximation.6–8We hope that our improved analytic mod
will be useful for these purposes, and also for the constr
tion of new and more accurate functionals. In particular,
spin-resolved version of our model, when fully develope
could bring useful new information for the construction
functionals. Indeed, simple hypotheses for the spin resolu
©2002 The American Physical Society18-1
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have already been used to construct several correla
functionals.9,10 The uniform gasgxc is also relevant to den
sity matrix functional theory.11

The static structure factorSxc(r s ,z,k/kF) is the Fourier
transform

Sxc~r s ,z,k/kF!511
4

3pE0

`

@gxc~r s ,z,kFu!21#

3~kFu!2
sinku

ku
d~kFu!, ~6!

and its coupling-constant averageS̄xc is obtained by chang
ing gxc into ḡxc in Eq. ~6!. Usually gxc and consequently
ḡxc , Sxc , andS̄xc are divided into exchange and correlatio
contributions

gxc~r s ,z,kFu!5gx~z,kFu!1gc~r s ,z,kFu!, ~7!

where the exchange functiongx is obtained by putting a
Slater determinant of Kohn-Sham orbitals~or of Hartree-
Fock orbitals! into Eq. ~1!. For a uniform electron gas, bot
Kohn-Sham and Hartree-Fock orbitals are plane waves,
gx is a simple function ofkFu. The exchange-only pair
distribution function does not depend explicitly onr s , so
that ḡx5gx : the explicit dependence onr s only appears
when Coulomb repulsion is taken into account in the wa
function.

Both gx andgc have long-range oscillations. At high den
sities, these are Friedel oscillations; at low densities, t
represent the incipience of Wigner-crystal order within t
liquid phase of uniform density. These oscillations are en
getically unimportant in the following sense:2 A model which
omits them but is constrained to have the same energy
gral can correctly describe the short-range correlation w
averaging out the oscillations of the long-range correlati
The energetic unimportance of the oscillations is probab
consequence of the long-range and ‘‘softness’’ of the C
lomb interaction.

Available analytic models2,12 of gc andḡc for the uniform
electron gas break down at high13,14 (r s&0.1) and low (r s
.10) densities. In this paper, we present a model for
nonoscillatory part ofḡc ~and hencegc) which fulfills most
of the known exact properties and is valid over the wh
(0,r s,`) density range and for all spin polarizationsz.
Our model is built up by interpolating between the sho
range part recently computed in Ref. 15 and the long-ra
nonoscillatory part which is exactly given by the rando
phase approximation16 ~RPA!. Exact small-u and large-u ex-
pansions are recovered up to higher orders with respec
currently available models.2,12 All the parameters which ap
pear in our interpolation scheme are fixed by exact con
tions. We also build up a new nonoscillatory exchangegx
which fulfills exact short-range and long-range properties
to the same order as ourḡc does.

The paper is organized as follows. In Sec. II, we list t
known exact properties ofgxc and ḡxc , and the major limi-
tations of the models of Refs. 2 and 12. We then present
nonoscillatory model for exchange~Sec. III! and for correla-
16511
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tion ~Sec. IV!. In Sec. V, we discuss our results for exchan
and correlation over the whole density range. At meta
densities, we compare our analytic model with the availa
quantum Monte Carlo~QMC! data,3,17 finding fair agreement
~Fig. 3!. We also computedgc corresponding to the dynami
local-field factors of Richardson and Ashcroft18 ~RA!, in or-
der to see better how our model averages out the long-ra
oscillations~currently not available from QMC!. In this way,
we are also able to show the effect of a dynamic local-fi
factor on the long-range oscillations, by comparing the R
result with the RPA~corresponding to zero local-field facto!
long-rangegc ~Fig. 4!. At high density, we find that our
model is in very good agreement with exact calculations13,19

~Fig. 5!, and at low density it does not break down a
shows the expectedz dependence~Fig. 1!. We also compare
~Fig. 6! our model with previous models,2,12 and discuss the
qualitative effects of correlation~Fig. 7!. In Sec. VI, we dis-
cuss how to extend our scheme to the spin-resolved (↑↑, ↓↓
and↑↓) pair-distribution functions. The wave vector analys
of the kinetic energy of correlation corresponding to ourSc

and S̄c is presented in Sec. VII. Section VIII is devoted
conclusions and perspectives.

II. EXACT PROPERTIES AND LIMITATIONS OF
PREVIOUS MODELS

We list below most of the known exact properties ofgxc
and ḡxc for the 3D uniform electron gas. Equation~1! im-
plies the positivity constraintgxc>0 and the particle-
conservation sum rule, which can be divided into exchan
and correlation

FIG. 1. Upper panel: our nonsoscillatory model for exchange
the uniform electron gas is compared with the exact Hartree-F
curve. Note thatgx is the r s→0 limit of gxc . Lower panel: low-
density limit of our analytic model for the exchange-correlati
pair-distribution function of the uniform gas. In this limit, the mod
gxc is almost exactly independent of the relative spin polarizationz.
8-2
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E
0

`

du 4pu2n~gx21!521, ~8!

E
0

`

du 4pu2n gc5E
0

`

du 4pu2n ḡc50. ~9!

With the Coulomb interaction 1/u, the exchange function
gx , the correlation functiongc , and its coupling-constan
averagedḡc integrate to the exchange energyex , to the po-
tential energy of correlationvc , and to the correlation energ
ec , respectively,

1

2E0

`

du 4pu2
1

u
n~gx21!5ex~r s ,z!, ~10!

1

2E0

`

du 4pu2
1

u
n gc5vc~r s ,z!, ~11!

1

2E0

`

du 4pu2
1

u
n ḡc5ec~r s ,z!. ~12!

For further discussion of the exchange hole dens
n(gx21) surrounding an electron, the correlation hole de
sity n ḡc , and the generalization of Eqs.~8!–~12! to nonuni-
form densities, see Refs. 6 and 20.

The short-range behavior ofgxc is determined by the 1/u
Coulomb repulsion, which gives rise to the cusp conditio21

dgxc

du U
u50

5gxcuu50 . ~13!

The function ḡxc satisfies a modified cusp condition2,15

which can be derived from Eqs.~3! and ~13!. A quite accu-
rate estimate of ther s and z dependence of the short-rang
expansion coefficients ofgxc and ḡxc has been recently ob
tained by solving a scattering problem in a screened C
lomb potential which describes the effective electro
electron interaction in a uniform electron gas—the exten
solution15 of the Overhauser model.22 @Classical electrons a
zero temperature would havegxcuu5050, but nonzero values
have a nondivergent potential-energy cost according to
~11! and for quantum mechanical electrons lower the kine
energy associated with the swerving motion needed to k
two electrons from colliding. Thus the right-hand side of E
~13! is nonzero, except in the low-density limit. It is sim
larly nonzero for a gas of classical electrons at an eleva
temperature.23#

The long-range part of the nonoscillatorygxc corresponds
to the small-k behavior of the static structure factor, which
determined by the plasmon contribution, proportional tok2,
and by the single-pair and multipair quasiparticle-quasih
excitation contributions, proportional tok5 and k4,
respectively,24,25

Sxc~r s ,z,k→0!5
k2

2vp~r s!
1O~k4!, ~14!

wherevp(r s)5A3/r s
3 is the plasma frequency. Equation~14!

is called the plasmon sum rule. There is nok3 term in the
16511
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small-k expansion27 of Sxc . Since, when k→0, the
exchange-only static structure factorSx is equal to

Sx~z,k→0!5
3

8
@~11z!2/31~12z!2/3#

k

kF
2

k3

16kF
3

,

~15!

there must be a linear term and a cubic term in the smak
expansion of the correlation static structure factorSc which
cancel with the exchange. In real space, these terms co
spond to long-range tails}u24 and }u26, respectively.2,26

The nonoscillatory exchange-correlation pair-distributi
function has a long-range tail12,26}u28. As for more general
densities, the exchange-correlation hole is more locali
around its electron than the exchange hole~and thus better
described by local or semilocal approximations for nonu
form densities!. The high-density limit of the random-phas
approximation~RPA! exactly describes16 the nonoscillatory
long-range part ofgxc , recovering Eq.~14! through orderk2.
The absence of thek3 term in the small-k expansion ofSxc
was demonstrated for thez50 gas by using exact frequency
moment sum rules.27 The same arguments should hold f
the zÞ0 gas. Notice that the cancellation of thek3 terms is
obtained from beyond-RPA considerations.27

Armed with these exact constraints, we can discuss
strengths and weaknesses of previous analytic models, w
unlike our present model break down13,14outside the metallic
density range 1&r s&10. The Perdew-Wang model2 was
largely based on first principles, plus limited fitting to qua
tum Monte Carlo data. This model introduced the hig
density limit of the RPA as the long-range component ofgxc .
But that limit was modelled crudely, leading to violation o
the particle-conservation sum rule~and thus to failure for
r s&0.1). The model did not incorporate the plasmon s
rule, and produced an incorrectu25 nonoscillatory long-
range limit forgxc . The positivity constraint was violated a
low densities, a problem evaded by switching over to a d
ferent analytic form forr s.10. In this model, the spin reso
lution of gxc , even in its revised form,14 is less reliable than
the totalgxc .

The model of Gori-Giorgi, Sacchetti, and Bachelet12 was
based upon extensive fitting to spin-resolved quantum Mo
Carlo data forz50, and did not address nonzeroz. Their
model forgxc , unlike that of Perdew and Wang, was analy
cally Fourier transformable toSxc . It incorporated the par-
ticle conservation and plasmon sum rules, and the cor
u28 long-range limit forgxc , but did not build in the impor-
tant high-density limit of the RPA for largeu, leading to
failure for r s!0.8. Moreover, small-u errors of the Monte
Carlo data were transferred into the model.15

III. NONOSCILLATORY EXCHANGE HOLE

We present here our nonoscillatory model for the e
change hole. This new model satisfies exact short-range
long-range conditions up to the same order as
correlation-hole model~Sec. IV! does.

The exact exchange-only pair-distribution function for t
uniform gas is
8-3
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gx~z,kFu!511
1

2
$~11z!2J@~11z!1/3kFu#1~12z!2

3J@~12z!1/3kFu#%, ~16!

where

J~y!52
9

2 S siny2y cosy

y3 D 2

. ~17!

Our nonoscillatorŷ J(y)& is parametrized as

^J~y!&5
29

4y4 F12e2Axy2S 11Axy
21

Ax
2y4

2
1

Ax
3y6

3! D G
1e2Dxy2

~Bx1Cxy
21Exy

41Fxy
6!. ~18!

This model is similar in spirit, but not in detail, to those
Refs. 2 and 28. The first term of Eq.~18! achieves the correc
average long-range behavior2 9

4 y24 as y→`, and is
damped out at smally by the first square bracket which va
ies from y8 as y→0 to 1 asy→`. The second term then
builds in the correct small-y behavior. The Gaussian
smoothly blend the two terms, but are not motivated by a
physical model. The analytic forms and linear parameter
Eq. ~18! are convenient for constraint satisfaction. The se
ration into long-range and short-range parts, although so
what arbitrary, could be useful for the construction of ne
density functionals. The spherical Fourier transform
^J(y)&,

J̃~k!5E
0

`

^J~y!&y2
sin~ky!

ky
dy, ~19!

is also analytic and is reported in Appendix A. The largey
expansion of Eq.~18! is

^J~y→`!&52
9

4
y241O~e2y2

!, ~20!

while the nonoscillatory average of the exactJ(y) also con-
tains a2 9

4 y26 term ~and no other long-range term!. Such a
term was included in the models of Refs. 2 and 28, but w
a coefficient wrong in both sign and magnitude. As explain
in Sec. II, the exact nonoscillatory correlation hole has lo
range termsy24 and y26 which exactly cancel with the
exchange,12,26,27 so that the exact nonoscillatory exchang
correlation hole has a long-range tail12,26 }u28 which is
purely correlation. However, as detailed in Sec. IV A, o
nonoscillatory correlation-hole model is built without au26

long-range term, since this choice preserves a simple
useful scaling. We have thus also set they26 term to zero in
our nonoscillatory exchange-hole model, in order to have
exchange-correlation hole with the exactu28 long-range be-
havior.

The six parametersAx throughFx are fixed by requiring
that ~i! the particle-conservation sum rule is fulfilled,~ii ! our
gx gives zero contribution to the plasmon sum rule,~iii ! our
gx recovers the exact exchange energy,~iv! our gx is exact at
u50 in obedience to the Pauli principle in real space~two
16511
y
in
-
e-

f

h
d
-

-

r

nd

n

electrons of parallel spin cannot come together, since
antisymmetry of the wave function makes this probabil
vanish!, ~v! our gx has the exact second derivative atu50,
and ~vi! the information entropyS@2J(y)#

S@2J~y!#5E
0

`

dy 4py2J~y!ln@2J~y!# ~21!

is maximized.28,29 S of Eq. ~21! is not a thermodynamic en
tropy but a mathematical one whose maximization ensu
that the analyticJ(y) has no structure beyond that impos
by the exact constraints used to construct it. The param
values areAx50.77, Bx520.5, Cx520.08016859, Dx
50.3603372,Ex50.009289483, andFx520.0001814552.

Our nonoscillatory modelgx is compared with the exac
exchange atz50 andz51 in the upper panel of Fig. 1. In
the first panel of Fig. 4, the exchange holegx21 is multi-
plied by (u/r s)

4 in order to show how our model~solid line!
averages out the oscillations of the exact exchange h
~dashed line!.

IV. NONOSCILLATORY CORRELATION HOLE

Following Perdew and Wang,2 we write the nonoscillatory
part of the correlation hole as the sum of a long-range p
and a short-range part, somewhat as in Eq.~18!:

^ḡc~r s ,z,kFu!&5
f3r s

k

f̄ 1~v !

~kFu!2 F12e2d x2S 11d x2

1
d2

2
x4D G1e2d x2

(
n51

6

cnxn21, ~22!

wherek5(4/3p)(9p/4)1/3, f5@(11z)2/31(12z)2/3#/2, x
5kFu/f, andv5fkAr skFu. The six linear parameterscn
depend on bothr s and z, while the nonlinear parameterd
only depends onz.

The first term in the right-hand side~RHS! of Eq. ~22! is
the long-range part of ourḡc : the function f̄ 1(v) is a new
parametrization~see Sec. IV A! of the RPA limit found by
Wang and Perdew16 and displayed in Fig. 2 of Ref. 2. We
multiplied f̄ 1(v)/(kFu)2 by a cutoff function which cancels
its small-u contributions, so that the long-range part of o
ḡc vanishes through orderu4 and does not interfere with th
short-range part.

For modeling the short-range part, corresponding to
last term in the RHS of Eq.~22!, we use our recent result
obtained by solving the Overhauser model,15 which allow us
to fix the r s and z dependence of the linear parametersc1 ,
c2, and c3 ~Sec. IV B!. We then use the remaining thre
linear parametersc4 , c5, and c6, to fulfill the particle-
conservation sum rule and the plasmon sum rule, and to
cover the ‘‘exact’’ correlation energy~Sec. IV C!. Finally, the
nonlinear parameterd(z), which determines the ‘‘mixing’’
of long-range and short-range contributions, is fixed by i
posing the positivity constraint ongxc when r s→` ~Sec.
IV D !.
8-4
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A. Long-range part

As discussed in Refs. 16 and 2, the long-range (u→`)
part of the nonoscillatory correlation hole can be obtain
from the random-phase approximation by computing itsr s
→0 limit. One finds

n^ḡc~r s ,z,kFu!&→f3~fks!
2

f̄ 1~v !

4pv2
, ~23!

where ks is the Thomas-Fermi screening wave vectorks

5kAr skF . The functionf̄ 1(v) is the spherical Fourier trans
form of the functionf (z,0) given by Eqs.~29!, ~34!, and~36!
of Ref. 16,

f̄ 1~v !52v2E
0

`

dz z2f ~z,0!
sin~vz!

vz
, ~24!

wherez5k/fks is the proper scaled variable in reciproc
space. The small- and large-z expansion off (z,0) is

f ~z→0,0!52
3

p2
z1

4A3

p2
z21O~z3!, ~25!

f ~z→`,0!52
2~12 ln 2!

p2
z211O~z22!. ~26!

Equation~26! gives the high-density limit of the correspon
ing correlation energy

ec~r s→0,z!5
~12 ln 2!

p2
f~z!3ln r s1O~r s

0!, ~27!

which is exact atz50 and 1, but is slightly different from
the exact result for 0,z,1 ~see Refs. 2 and 16 for furthe
details!. The small-z expansion off (z,0), Eq. ~25!, fulfills
the particle-conservation sum rule@ f (z50,0)50#, contains
a linear term which cancels with the exchange~and corre-
sponds to a long-range tail}u24 in real space, see Sec. II!,
and fulfills the plasmon sum rule@exactz2 coefficient, see
Eq. ~14!#. The z3 term in Eq. ~25!, if it does not vanish,
produces au26 contribution to the correlation hole at largeu.

As said in Secs. II and III, the long-range (u→`)
nonoscillatory behavior of the exact exchange hole conta
u24 and u26 contributions which are cancelled12,26,27 by
similar contributions to the exact correlation hole. When
use the high-density limit of Eq.~23! for the long-range par
of the correlation hole, we automatically achieve cance
tion of the u24 terms. But to cancel theu26 terms in gx

21, we would have to replacef̄ 1(v)/v2 in Eq. ~23! by
f̄ 1(v)/v21r sfh(r s ,z,v), where f̄ 1(v)/v2 has nov26 con-
tribution andh is proportional tov26 with no r s or z depen-
dence at largev. The extra termr sfh vanishes in the high-
density limit for a givenv, and is unknown. Since we wan
to keep for ourḡc the simple form of Eq.~22!, but we also
want to have the correct long-range behavior (}u28) for
ḡxc , we decided simply to set theu26 terms to zero in both
our exchange~Sec. III! and correlation-hole models. Figure
16511
d

s

e

-

3 and 4 do not suggest that this choice introduces any
nificant error into our models for the separate exchange
correlation holes.

We thus parametrizef̄ 1(v) as follows:

f̄ 1~v !5
a01b2v1a1v21a2v41a3v6

~v21b2!4
. ~28!

With respect to the parametrization given by Perdew a
Wang,2 our Eq.~28! has the advantage that it is analytical
Fourier transformable~see Appendix B!, so that the particle-
conservation sum rule and the plasmon sum rule can be
ily imposed.~They are not fulfilled by the Perdew and Wan2

parametrization.! After imposing on ourf̄ 1(v) all the exact
properties plus the vanishing of thez3 term in Eq.~25!, we
are left with one free parameter,b, which is fixed by a best fit
to our RPA data.16 All the parameter values are reported
Appendix B. The functionf (z,0) corresponding to our pa
rametrization@see Eq.~B1!# is compared in Fig. 2 with the
RPA result and with the Fourier transform of the Perdew a
Wang2 ~PW92! f̄ 1(v).

B. Short-range part

Our ḡc has the small-u expansion

^ḡc&5c11c2

kFu

f
1~2c1d1c3!S kFu

f D 2

1O~u3!.

~29!

In order to recover the short-range behavior obtained
solving the Overhauser model,15 we require

c15
~12z2!

2
@ ā0

↑↓~r s
↑↓!21#, ~30!

c25fS 4

9p D 1/3~12z2!

2

@~11z!1/31~12z!1/3#

2
ā1

↑↓~r s
↑↓!,

~31!

c35f2F S 4

9p D 2/3

ā2~r s ,z!2
~11z!8/31~12z!8/3

20 G1c1d,

~32!

FIG. 2. The functionf (z,0) given in Ref. 16. The exact calcu
lation ~RPA! is compared with the present parametrization and w
the one of Perdew and Wang~Ref. 2! ~PW92!.
8-5
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where r s
↑↓52r s /@(11z)1/31(12z)1/3#, and ā0

↑↓ , ā1
↑↓, and

ā2(r s ,z) are given by Eqs.~36!, ~37!, and~46! of Ref. 15. In
this way, the modified cusp condition is exactly satisfied.15

C. Sum rules

We want our correlation hole to satisfy the particl
conservation sum rule and the plasmon sum rule, and to
cover the ‘‘exact’’ correlation energy. Our new parametriz
tion of the functionf̄ 1(v) satisfies the particle-conservatio
sum rule, and recovers the exact plasmon coefficient and
lnrs term of the resulting correlation energy. Thus, we on
have to require that the remaining part of ourḡc gives zero
contribution to~i! the particle-conservation sum rule and~ii !
the plasmon sum rule, and~iii ! recovers the correlation en
ergy beyond the lnrs term. In this way we have three linea
equations for the three parametersc4 , c5, andc6:

(
n51

6

c̃nE
0

`

e2t2tn11dt5A S~a!, ~33!

(
n51

6

c̃nE
0

`

e2t2tn13dt5A P~a!, ~34!

(
n51

6

c̃nE
0

`

e2t2tndt52A R~a!1E, ~35!

where c̃n5cn /d(n21)/2, t5AdkFu/f, A5fr sd/k, a
5f2k(r s /d)1/2, and

S~a!5E
0

`

f̄ 1~at !e2t2S 11t21
1

2
t4Ddt, ~36!

P~a!5E
0

`

f̄ 1~at !e2t2t2S 11t21
1

2
t4Ddt, ~37!

R~a!5E
0

` f̄ 1~at !

t F12e2t2S 11t21
1

2
t4D Gdt, ~38!

E5
2r sd

3 f2 S 9p

4 D 2/3

ec~r s ,z!. ~39!

The functionsS(a), P(a), andR(a) can be obtained ana
lytically and are reported in Appendix C. The parametersc4 ,
c5, andc6 are then equal to

c̃45$100Ap~3p28!c̃11~690p22048!c̃21Ap~225p

2672!c̃31~819222100p!AS~a!1AP~a!~600p

22048!1960Ap@AR~a!2E#%/@4~5122165p!#,

~40!
16511
e-
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c̃552$~30p2128!c̃128Ap c̃21~39p2128!c̃3

2144ApAS~a!116ApAP~a!

2256@AR~a!2E#%/~5122165p!, ~41!

c̃65$Ap~180p2624!c̃11~150p2512!c̃21Ap~135p

2432!c̃31~307221260p!AS~a!1AP~a!~360p

21024!2480Ap@AR~a!2E#%/@6~165p2512!#.

~42!

D. Positivity constraint in the low-density limit

The nonlinear parameterd can be fixed by imposing the
condition thatḡxc remains positive whenr s→`. The short-
range behavior imposed on ourḡc ensures that the small-u
expansion of the correspondingḡxc has coefficients which
are always>0 through orderu2, and which become zero in
the low-density or strongly correlated limit. We hav
checked that, if we want to have a positiveḡxc for all den-
sities, we only need to require that also theu3 coefficient
~equal toc42d c2) becomes 0 whenr s→`, according to the
cusp condition for parallel-spin pairs.12,15,21We thus have an
equation ford(z):

lim
r s→`

c4~r s ,z!2d~z!c2~r s ,z!50. ~43!

Equation ~43! is rather complicated sincec4 also depends
nonlinearly ond. However, it can be solved numerically fo
eachz, and, when the Perdew-Wang33 parametrization of the
correlation energy is used in Eq.~39!, the result is very well
fitted by

d~z!5d~0!@~11z!2/31~12z!2/321#, ~44!

with d(0)50.131707.

V. RESULTS FOR THE EXCHANGE-CORRELATION
HOLE

In the next three subsections we present and discuss
results for the nonoscillatorygx , gc , andgxc in the whole
(0,r s,`) density range. We have used the correlation
ergy ec as parametrized by Perdew and Wang,33 which was
built with the quantum Monte Carlo data of Ref. 3 as
input. It is, however, straightforward to build into our equ
tions anab initio ec for the 3D uniform gas when available,34

showing that the exact constraints suffice to determinegxc
without the need for any ‘‘numerical experiment.’’

A. Metallic densities

In the six upper panels of Fig. 3 we compare our analy
gc with the quantum Monte Carlo~QMC! data of Ceperley
and Alder3 ~CA! and of Ortiz, Harris, and Ballone17 ~OHB!
for r s52, 5, and 10, and forz50 ~left! andz51 ~right!. In
the z50 case, we also reportgc as obtained by the dynami
local-field-factor model of Richardson and Ashcroft18 ~RA!
8-6
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PAIR DISTRIBUTION FUNCTION OF THE SPIN- . . . PHYSICAL REVIEW B 66, 165118 ~2002!
via the fluctuation-dissipation theorem~as in Ref. 35!. The
RA model yields very accurate correlation energiesec(r s ,z
50),35 and we find that the RAgc is in very good agreemen
with QMC data except at smallu. The limit u→0 is not
correctly included in the RA parametrization of the loca
field factor, which violates the Pauli principle in real spac

We see that our model is in fair agreement with QMC d
for the paramagnetic gas. In the ferromagnetic case, w
the pair-correlation function shows stronger oscillations e
at intermediate densities, the agreement is less satisfac
~as in the model of Ref. 2!. This is not surprising, since ou
model does not take into account the energetically unimp
tant oscillations: it only includes the minimum number
oscillations needed to fulfill the sum rules. This is evident
the second and third panel of Fig. 4, wheregc is multiplied
by (u/r s)

4. In this way, the long-range oscillations are am
plified and become clearly visible even at metallic densiti

FIG. 3. Coulomb correlation contributiongc to the pair-
distribution functiongxc for the uniform electron gas for the para
magnetic (z50) and ferromagnetic (z51) state. Our analytic
model is compared with the diffusion quantum Monte Carlo res
of Ortiz, Harris, and Ballone~Ref. 17! ~OHB!, and of Ceperley and
Alder ~Ref. 3! ~CA!. The pair-correlation function corresponding
the local-field-factor model of Richardson and Ashcroft~Ref. 18!
~RA! is also shown. In the two bottom panels, the low-density lim
of our gc is reported.
16511
.
a
re
n
ry

r-

:

we can thus compare our model~solid line! with the RA
result~dashed line!. This is done atr s52 and 10. The many
exact properties imposed on the RA local-field factor and
first three left panels of Fig. 3 suggest that the long-ran
part of the RAgc is very reliable and that the oscillations a
probably accurately described. One clearly sees in Fig
how our model follows the first oscillation and averages o
the others. In the lowest panel of Fig. 4, the long-range
cillations of the random-phase approximation~RPA! gc at
r s510 are also shown. At larger s , the RPA oscillations of
gc tend to cancel the ones ofgx ~first panel!, while the effect
of a dynamic local-field factor clearly inverts this tendenc

s

t
FIG. 4. Upper panel: long-range part of the exchange hole.

nonsoscillatory model is compared with the exact exchange. Sec
and third panel: long-range part of the correlation hole. O
nonoscillatory model is compared withgc obtained from the Rich-
ardson and Ashcroft~Ref. 18! ~RA! local-field factor. In the lowest
panel the random-phase-approximation~RPA! result for r s510 is
also shown. All curves are for thez50 gas.
8-7
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PAOLA GORI-GIORGI AND JOHN P. PERDEW PHYSICAL REVIEW B66, 165118 ~2002!
the oscillations of the RAgc ~second and third panel! are
almost in phase with the oscillations ofgx . We interpret this
to mean that the RAgxc of the low-density uniform electron
gas is building up an incipient Wigner-crystal-like order
the other electrons around a given electron.

B. High density

In the high-density limit,gc52ḡc goes to zero, so tha
gxc→gx . It has been shown2,13,19 that in the r s→0 limit
gc /r s remains finite and goes to a well defined function
u/r s , which has been computed exactly.13,19 In Fig. 5 we
compare this exact calculation~dashed line! with our model
~solid line!, computed atr s51025, for z50 andz51. We
see that~i! our model does not break down asr s→0 and~ii !
there is fair agreement with the exact result. Previo
models2,12 for gc usually break down atr s;0.1. Feature~i!
is due to the new parametrization off̄ 1(v) which exactly
fulfills the particle-conservation sum rule, while feature~ii !
is due to the short-range behavior taken from Ref. 15, wh
includes the exact high-density limit of the short-range co
ficients.

C. Low density

In the low-density or strongly correlated limit, we expe
that gxc ~equal to ḡxc in this case! does not depend onz,
since in this limit the Pauli principle in real space becom
irrelevant with respect to the Coulomb repulsion. In t
lower panel of Fig. 1 we report our model atr s5105 for
three different values of the spin polarizationz. We see that
the z dependence of our low-densitygxc is indeed very
weak, and that, unlike previous parametrizations,2,12 our
model never gives rise to an unphysical negative p
distribution function. Figure 1 also offers a view on the sa
scale of the extreme high-density limit ofgxc ~equal to the
exchange-only pair-distribution function, first panel! and of
the extreme low-density limit~second panel!. We see how
the z dependence ofgxc , which is very strong in ther s→0
limit, is cancelled by correlation in ther s→` limit. The
low-density limit of ourgc5gxc2gx is reported in the two
lowest panels of Fig. 3 forz50 or z51.

FIG. 5. Coulomb correlation contribution to the pair-distributio
function for the uniform electron gas for the paramagnetic (z50)
and ferromagnetic (z51) state in the high density (r s→0) limit.
The result from our analytic model is compared with the ex
calculation of Refs. 13,19.
16511
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D. Comparison with previous analytic models

In Fig. 6 the present model is compared with the para
etrizations of Perdew and Wang2 ~PW92! and of Gori-Giorgi,
Sacchetti, and Bachelet12 ~GSB!. In the first panel, we see
that in the high-density regime (r s50.01) the PW92 mode
starts to break down,14,19and that the GSB parametrization
completely unable to describe such high densities.~This is
due to the wrongr s→0 behavior of the GSB on-top pai
density.! At r s52, well inside the metallic regime, we se
~second panel! that the present work is very close to th
PW92 model and slightly deviates from the GSB curve
u/r s&1. Finally, in the third panel we show the total pai
distribution functiongxc at r s5100: the PW92 model in its
original form completely blows up, while the GSB mod
becomes negative atu/r s&1 but is still ‘‘reasonable.’’ The
low-density form proposed in the Appendix of Ref.
~PW92-App! is also reported: it corresponds to an exchan
correlation hole narrower than the present one.

E. Features of the ‘‘correlation factor’’

To better see the effects of correlation, we define a ‘‘c
relation factor’’

K̄xc~r s ,z,kFu!5
ḡxc21

gx21
511

ḡc

gx21
~45!

t

FIG. 6. Comparison of the present work with the models of R
2 ~PW92! and of Ref. 12~GSB! at high densities~first panel!,
metallic densities~second panel!, and in the low-density regime
~third panel!. In ther s5100 case the original PW92 curve has be
divided by 10, and the low-density form proposed in the Appen
of Ref. 2 ~PW92-App! is also reported. All curves are for the par
magnetic (z50) gas.
8-8
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PAIR DISTRIBUTION FUNCTION OF THE SPIN- . . . PHYSICAL REVIEW B 66, 165118 ~2002!
which morphs the exchange hole into the exchan
correlation hole, and is displayed in Fig. 7. We must
course use nonoscillatory models here, since the exacgx
21 has nodes which would create singularities in Eq.~45!.
Figure 7 shows thatK̄xc→Kx51 in the r s→0 limit. For
typical valence-electron densities, we see that correlation
hances or deepens the hole (K̄xc.1) around an electron fo
u/r s&1.5, while it screens out the long-range part of t
hole. Because of the exact cancellation of theu24 andu26

long-range terms betweenḡc andgx21, K̄xc at largeu goes
to 0 asu24. For r s.2, K̄xc can be negative in the rang
1.5&u/r s&3, corresponding to a positive peak inḡxc21.
We can think ofK̄xc(r s ,z,kFu)/u as an effective, density
dependent screened electron-electron interaction whose
change energy equals the exchange-correlation energy o
Coulomb interaction 1/u.

The correlation factor has a possible application30,31to the
modelling of exchange and correlation in systems of nonu
form density. First we note that the exchange-correlation
ergy is fully determined by the spherical averagenxc(r ,u) of
the hole,1

nxc~r ,u!5E dVu

4p
nxc~r ,r1u!. ~46!

A possible ‘‘correlation factor model’’31 for nxc(r ,u) is

nxc~r ,u!5K̄xc~r ,u!nx~r ,u!, ~47!

wherenx(r ,u) is the exact exchange hole.K̄xc for a nonuni-
form density could be constructed from Eq.~45! by inserting
into Eq. ~22! ~or a simplification thereof! an r -dependent se

FIG. 7. The correlation factorK̄xc defined in Eq.~45! for the
paramagnetic~upper panel! and ferromagnetic~lower panel! uni-
form electron gas.
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-
f

n-

ex-
the

i-
n-

of linear parameterscn chosen to satisfy exact constraints o
nxc . The result would presumably be a model for exact e
change and approximate correlation compatible therew
The screening of the long-range part of the exact excha
hole is essential for a proper description of molecules.32

VI. SPIN RESOLUTION

We can define spin-resolved pair-distribution functio
which describe spatial correlations between↑↑, ↓↓, and↑↓
electron pairs. Their normalization is such that the sp
averagedgxc of Eq. ~1! is equal to

gxc5S 11z

2 D 2

gxc
↑↑1S 12z

2 D 2

gxc
↓↓1S 12z2

2 Dgxc
↑↓ . ~48!

While the spin resolution of the exchange-only pa
distribution functiongx is well known,2 the correlation part
is much more delicate, and an accurate analytic represe
tion is only available12 for z50 in the density range 0.8
<r s<10.

The model presented in Sec. IV can be used to build
spin-resolved correlation functions provided that the s
resolution of the input quantities is known. The input qua
tities are ~i! the RPA long-range part,~ii ! the short-range
coefficients from the solution of the Overhauser model, a
~iii ! the correlation energy. Once these input quantities
known, in fact, one can build, say,ḡc

↑↓ , starting from the
same Eq.~22!, using the RPA↑↓ long-range part, and putting
the ↑↓ short-range coefficients into Eqs.~30!–~32!, andec

↑↓

into Eq. ~39!. Finally, the positivity constraint ofgxc
↑↓ in the

low-density limit can be applied to findd↑↓(z), as done in
Sec. IV D.

The first point is thus to see whether the quantities~i!–
~iii ! are available in their spin-resolved contributions. T
RPA long-range part is easily spin resolved for thez50
gas,12,14 while its spin resolution in the partially polarize
gas is less trivial. The short-range coefficients from the Ov
hauser model are available as↑↑, ↓↓, and ↑↓ separate
contributions.15 The correlation energy represents the ma
problem: atz50 it can be easily spin resolved in the hig
and low-density limits, while at intermediate densities t
best estimate is probably the one given in Ref. 12. Alm
nothing about the spin resolution ofec is known for thez
Þ0 gas, except in the extreme low-density limit, when t
system becomesz independent.

Here, we show results forgc
↑↓ in three cases: the extrem

low-density limit, the high-density limit of the paramagnet
gas, and ther s52, z50 case. The low-density limit must b
treated first, since it is necessary to determined↑↓(z) through
the positivity constraint ongxc

↑↓ when r s→`.
When z50, the spin resolution within RPA is very

simple: up-up and up-down interactions contribute the sa
amount to correlation.12,14The long-range part of ourḡc

↑↓ can

thus be built using the functionf̄ 1(v) of Eq. ~28! with the
same parameters of Appendix B. While the spin-avera
nonoscillatory long-range behavior computed within RPA
also exact beyond it at all densities, its spin resolution
exact beyond RPA only whenr s→0.36 We keep on using it
8-9
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PAOLA GORI-GIORGI AND JOHN P. PERDEW PHYSICAL REVIEW B66, 165118 ~2002!
even in the extreme low-density limit, since it is the on
way to build up a spin-resolvedgc starting from our model.
As we shall see, the results obtained are reasonable,
justify our choice. Whenr s→`, we expect the statistics t
be energetically unimportant,37 so thatexc

↑↑5exc
↓↓5exc

↑↓5exc .
We thus findec

↑↓5exc520.892/r s , where the numerical co
efficient corresponds to the Perdew-Wang parametrizatio33

of ec . The positivity constraint ongxc
↑↓ gives

d↑↓~z!5d↑↓~0!@~11z!2/31~12z!2/321#, ~49!

with d↑↓(0)50.0885717. The results forgxc
↑↓ are shown in

Fig. 8, atr s5105, for z50 andz51.
For the high-density limit of the paramagnetic gas, all t

spin-resolved input quantities are exactly known. It is th
the best case to test our model. Whenr s→0, the spin-
resolution from RPA is exact also beyond it: the long-ran
part of ḡc

↑↓ is in this caseexactlydescribed by Eq.~28! with
the parameters of Appendix B. The correlation energy, in
limit,12,26 is simply equal to the spin-averaged correlati
energy of Eq.~27! with z set to zero. The short-range↑↓
coefficients from Ref. 15 include the exact spin-resolv
high-density limit of thez50 gas. The so-obtainedgc

↑↓ is
shown in Fig. 9, together with the exact calculation fro
Ref. 19, which is, in this case, equal to the RPA result.
find very good agreement.

At metallic densities, we used the spin-resolvedec for the
z50 gas from Ref. 12, and the RPA spin resolution for t
long-range part. In Fig. 10, we report our results forgc

↑↓ and
gc

↑↑52gc2gc
↑↓ at r s52, together with the QMC data of Re

FIG. 8. Up-down pair-distribution function for the uniform ele
tron gas in the low-density limit.

FIG. 9. Up-down Coulomb correlation contribution to the pa
distribution function for the paramagnetic (z50) uniform electron
gas in the high density (r s→0) limit. The result from our analytic
model is compared with the exact calculation of Ref. 19.
16511
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17, and with the values that we have obtained from the
chardson and Ashcroft~RA! local-field factors.18 We see that
our result is reasonable, but does not accurately agree
the QMC data. In this respect, the RA results are much be
for u/r s*0.7, while they blow up in the short-range pa
since they do not satisfy the Pauli principle in real space.
said, the spin resolution is very delicate, so that an anal
model is very difficult to build up. The best analytic repr
sentation ofgc

↑↓ andgc
↑↑ at metallic densities is probably th

one of Ref. 12, which was built to interpolate the QMC da
of Ref. 17 accurately.

VII. WAVE VECTOR ANALYSIS OF THE KINETIC
ENERGY OF CORRELATION

Wave vector analysis20 is usually a study of the static
structure factor of Eq.~6!. The wave vector analyses of th
correlation energyec and of the potential energy of correla
tion vc have often been reported,12,35,38while the kinetic en-
ergy of correlationtc is much less studied. We can decom
posetc(r s ,z) into contributions from different wave vector
of a density fluctuation

tc~r s ,z!5
3

2E0

`

dq q2Tc~r s ,z,q!, ~50!

whereq5k/kF . Sincetc5ec2vc , the wave vector analysis
of tc is just the difference between those forec andvc :

Tc~r s ,z,q!5
2kF

3p

@S̄c~r s ,z,q!2Sc~r s ,z,q!#

q2
. ~51!

The small-q limit of Tc can be obtained by the plasmon su
rule

Tc~r s ,z,q→0!5
A3

4
r s

23/21O~q2!, ~52!

and its leading term is independent ofz, as expected from
Eq. ~14!. To write down the large-q limit of Tc we need to
expandS̄c andSc for large arguments. We know that12,21,26,39

FIG. 10. Spin-resolved Coulomb correlation contribution to t
pair-distribution functions for the paramagnetic uniform electr
gas at densityr s52. The present model is compared with the qua
tum Monte Carlo~QMC! data from Ref. 17 and with the resu
obtained from the local-field factors of Richardson and Ashcr
~Ref. 18! ~RA!.
8-10
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PAIR DISTRIBUTION FUNCTION OF THE SPIN- . . . PHYSICAL REVIEW B 66, 165118 ~2002!
Sc~r s ,z,q→`!52
4

3pkF

2gxc~r s ,z,u50!

q4
1O~q26!,

~53!

from which we can also obtain the large-q limit of S̄c ,

S̄c~r s ,z,q→`!5
ḡ

q4
1O~q26!, ~54!

where

ḡ52
8

3p S 4

9p D 1/3 1

r s
E

0

r s
r s8gxc~r s8 ,z,u50!drs8 . ~55!

Through the cusp condition of Eq.~13!, we see that the
large-q limit of S̄c is determined by the coefficient ofu/r s in
the small-u expansion ofḡc , ā1(r s ,z) @see Eqs.~35! and
~37! of Ref. 15#, related toc2(r s ,z) of Eq. ~31! by ā1
5(9p/4)1/3c2 /f. We thus have

Tc~r s ,z,q→`!5
8

9p2

F2gxc~r s ,z,u50!22
ā1~r s ,z!

r s
G

q6
.

~56!

In Fig. 11, we reportTc for the z50 gas, for two different
densitiesr s52 and r s55. We clearly see that the sma
wave vector contribution totc comes from the kinetic energ
of the long-wavelength zero-point plasmons, and that the
cay of the plasmon contribution with increasing wave vec
k is gradual. The corresponding result from the Richard
and Ashcroft local field factor18 is also shown. The
Richardon-Ashcroft model gives a good description of pl
mon dispersion and damping.40

It is also interesting to compareTc with the decomposition
of the kinetic energy of correlation into contributions fro
different wavevectors of a quasielectron. Forz50, we can
write

tc~r s ,z50!5
3

2E0

`

dq q2nc~r s ,z50,q!~kFq!2. ~57!

FIG. 11. Wave vector analysis of the kinetic energy of corre
tion at r s52 and r s55 for the paramagnetic gas. The functio
Tc(r s ,z,k) is defined in Eq.~51!. The present work is compare
with the result obtained from the Richardson and Ashcroft~Ref. 18!
~RA! local-field factor.
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Herenc is the correlation contribution to the momentum d
tribution nc(q)5n(q)2n0(q), and n0 is the Fermi step
function. The leading term in the small-q expansion of
kF

2q2nc is proportional toq2, and is thus rather differen
from the corresponding behavior ofTc , Eq. ~52!. On the
other hand, in the large-q limit we have39

kF
2q2nc~r s ,z50,q→`!5

8

9p2

gxc~r s ,z50,u50!

q6
,

~58!

a behavior very similar to Eq.~56!. This is not surprising,
since the large-q limits of both Sc andnc are determined by
the downward-pointing kinks in the many body wave fun
tion @producing the cusp of Eq.~13!# which occur whenever
two electrons of antiparallel spin come together. In ther s
→0 limit, Eqs. ~56! and ~58! become equal. A study of the
equations linkingSc andnc from the point of view of density
matrix functional theory is reported in Ref. 41.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

The known exact constraints summarized in Sec. II, p
the random phase approximation for long-range (u→`) cor-
relation, the extended Overhauser model15 for short-range
(u→0) correlation, and the correlation energyec(r s ,z), suf-
fice to determine the pair distribution functiongxc(r s ,z,kFu)
of a uniform electron gas over the whole density range,
cluding the high-density (r s→0) and low-density (r s→`)
limits, apart from energetically unimportant long-range osc
lations. The analytic formulas we have so constructed for
coupling-constant-averagedḡxc should be useful for further
developments and applications of density-functional appro
mations for the exchange-correlation energy of a nonunifo
density.

For metallic densities (2,r s,10) with z50 or 1, our
gxc is in good agreement with quantum Monte Carlo.3,17 In
the same density range forz50, it also agrees with thegxc
we have calculated from the Richardson-Ashcroft18 dynamic
local-field factor, except nearu50 where the Richardson
Ashcroft model was found to break down~although this
model seems to describe the long-range oscillations
rectly!. In ther s→0 limit for small kFu, our gxc agrees with
the results of perturbation theory to zeroth~exchange! or first
order13,19 in the electron-electron interaction. The sta
structure factorSxc is also modelled accurately, neglectin
the nonanalytic structure of the exactSxc at k52kF arising
from long-range oscillations.41

Our formulas can also be used to spin-resolvegxc into
↑↑, ↓↓, and↑↓ components~Sec. VI!, when the spin reso-
lution of ec is known ~as it is in the high- and low-density
limits!. The additional information in the spin resolutio
might well be used to construct more accurate density fu
tionals for the correlation energy.

We have also examined two physically different wa
vector analyses of the kinetic energy of correlation in t
uniform electron gas, finding them the same only in the li
its of large wave vector and high density. We have also fou
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that the decay of the plasmon contribution with increas
wave vectork is gradual.

In the future, it may be possible to construct the corre

tion energyec(r s ,z) and its spin resolutionec
ss8(r s ,z) di-

rectly by interpolation between known limits,34 without us-
ing any Monte Carlo or other data. This development wou
probably not give us a betterec(r s ,z) than we already have
but would provide the first spin resolution over the who
range ofr s andz; it would also show that the known exa
constraints are by themselves sufficient to determinegxc .
The extended Overhauser model15 might be evaluated forz
different from zero, to test and refine the spin-scaling re
tions used in Ref. 15. The extended Overhauser model
also be made more self-consistent.42 A small FORTRAN77

subroutine which numerically evaluates ourḡc @Eq. ~22!#
can be downloaded at http://axtnt2.phys.uniroma1.it/PG
elegas.html
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APPENDIX A: NONOSCILLATORY EXCHANGE
HOLE IN RECIPROCAL SPACE

In reciprocal space, the exchange-only static structure
tor is equal to

Sx~z,k/kF!511
2

3p F ~11z!J̃S k

kF~11z!1/3D
1~12z!J̃S k

kF~12z!1/3D G , ~A1!

whereJ̃(k) is defined by Eq.~19!. From our parametrization
of ^J(y)& @Eq. ~18!# we obtain

J̃~k!5
9p

16
kF12erfS k

2AAx
D G2

3Ap

32
e2k2/4AxS 9AAx

1
k226Ax

4AAx
D 1

Ap

4
e2k2/4DxF Bx

Dx
3/2

1
Cx~6Dx2k2!

4Dx
7/2

1
Ex~60Dx

2220Dxk
21k4!

16Dx
11/2

1
Fx~840Dx

32420Dx
2k2142Dxk

42k6!

64Dx
15/2 G . ~A2!

APPENDIX B: LONG-RANGE CORRELATION
HOLE IN RECIPROCAL SPACE

The functionf (z,0) corresponding to our Eq.~28! is
16511
g

-

-
an

/

a

ts

c-

f ~z,0!5
1

2zb8 H a02
e2bz

48
@48a01~33a0b23a1b323a2b5

215a3b7!z1~9a0b223a1b423a2b619a3b8!z2

1~a0b32a1b51a2b72a3b9!z3#J
2

b2

6p z

]3I~b,z!

]~b2!3
, ~B1!

where

I~b,z!5
1

2b
@ebzE1~bz!2e2bzE1~2bz!#, ~B2!

and, withx.0,

E1~x!5E
x

`e2t

t
dt,

E1~2x!52Ei~x!52PVS E
2`

x et

t
dtD .

Here PV means the Cauchy principal value integral.43

The parameter values which satisfy Eqs.~25! and ~26!,
give rise to a zero coefficient for thez3 term in the small-z
expansion off (z,0), and accurately fit our RPA data,16 are

a052b8C0 ,

a15
6b3

p2
@p2C0b3178b2256A3#,

a2548b2/p2,

a3512/p2,

b25
3b4

p
@96A3236b2b3C0p2#,

C0522~12 ln 2!/p2,

b57.8.

APPENDIX C: ANALYTIC EXPRESSIONS FOR THE
FUNCTIONS S„a…, P„a…, AND R„a…

The three functions of Eqs.~36!, ~37!, and ~38!, which
enter our model forḡc , are given by a linear combination o
integrals of the kind

I m
n ~a!5E

0

` xne2x2

@~ax!21b2#m
dx, ~C1!

I m
21~a!5E

0

` 12e2x2

x@~ax!21b2#m
dx. ~C2!
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We obtain forS(a), P(a), andR(a):

S~a!5a0I 4
0~a!1~a01a1a2!I 4

2~a!1S 1

2
a01a1a2

1a2a4DI 4
4~a!1S 1

2
a1a21a2a41a3a6DI 4

6~a!

1S 1

2
a2a41a3a6DI 4

8~a!1
1

2
a3a6I 4

10~a!1b2a

3FI 4
1~a!1I 4

3~a!1
1

2
I 4

5~a!G , ~C3!

P~a!5a0I 4
2~a!1~a01a1a2!I 4

4~a!1S 1

2
a01a1a2

1a2a4DI 4
6~a!1S 1

2
a1a21a2a41a3a6DI 4

8~a!

1S 1

2
a2a41a3a6DI 4

10~a!1
1

2
a3a6I 4

12~a!1b2a

3FI 4
3~a!1I 4

5~a!1
1

2
I 4

7~a!G , ~C4!

R~a!5a0I 4
21~a!2~a01a1a2!I 4

1~a!2S 1

2
a01a1a2

1a2a4DI 4
3~a!2S 1

2
a1a21a2a41a3a6DI 4

5~a!

2S 1

2
a2a41a3a6DI 4

7~a!2
1

2
a3a6I 4

9~a!2b2a
.

16511
3FI 4
0~a!1I 4

2~a!1
1

2
I 4

4~a!G1
2a11a2b212a3b4

12b6

1b2

5

32

p

b7
, ~C5!

wherea0 , a1 , a2 , a3 , b2, andb are given in Appendix B.
The integrals of the kind~C1! can be written as

I m
n ~a!5Ĩm

n ~a/b!/b2n, ~C6!

Ĩm
n ~r !5E

0

` xne2x2

@~rx !211#m
dx, ~C7!

and starting from

Ĩ1
0~r !5

p

2r 2
e1/r 2F12erfS 1

r D G , ~C8!

Ĩ1
1~r !5

1

2r 2
e1/r 2

E1S 1

r 2D , ~C9!

can be computed by differentiation with respect toa andb.
The integrals of the kind~C2! can be also obtained by dif
ferentiation with respect tob of

I 1
21~a!5

eb2/a2
E1~b2/a2!1 ln~b2/a2!1g

2b2
, ~C10!

whereg50.5772156649.
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