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ABSTRACT: We have studied the correlation potentials
produced by various adiabatic connection models (ACMs) for
several atoms and molecules. The results have been compared
to accurate reference potentials (coupled cluster and quantum
Monte Carlo results) as well as to state-of-the-art ab initio
DFT approaches. We have found that all the ACMs yield
correlation potentials that exhibit a correct behavior, quite
resembling scaled second-order Görling-Levy (GL2) poten-
tials and including most of the physically meaningful features
of the accurate reference data. The behavior and contribution of the strong-interaction limit potentials have also been
investigated and discussed.

■ INTRODUCTION
The study of the exchange-correlation (XC) functional and the
development of efficient and accurate approximations to it are
among the main research topics in density functional theory
(DFT). Within this theoretical framework, the XC functional
describes in fact all the quantum effects of the electron−
electron interaction, and it finally determines the accuracy of
the overall computational procedure.
Over the years many different XC approximations have been

developed,1,2 and they are conventionally organized on the so-
called Jacob’s ladder of DFT.3 To the highest rung of the
ladder belong functionals that depend on the Kohn−Sham
orbitals and eigenvalues. Some examples of these are the
random-phase approximation,4,5 double-hybrids functionals,6,7

and the ab initio DFT methods.8−10

Another class of high-level XC approximations is the one of
functionals based on interpolating the adiabatic connection
integrand between its weak- and strong-interaction limits.
These functionals use as a starting point the adiabatic
connection formula11−14

∫ ρ λ= [ ]λE W dxc
0

1

(1)

where ρ is the electron density, λ is the interaction strength,
and Wλ[ρ] = ⟨Ψλ[ρ]|V̂ee|Ψλ[ρ]⟩ − U[ρ] is the density-fixed
linear adiabatic connection integrand, with Ψλ[ρ] being the
wave function that minimizes T̂ + λV̂ee while yielding the

density ρ (T̂ and V̂ee are the kinetic and electron−electron
interaction operators, respectively), and U[ρ] being the
Hartree energy. The task of constructing an XC approximation
is then translated to the one of developing a proper
approximation for the density-fixed linear adiabatic connection
integrand Wλ

15 by interpolating between its known exact
asymptotic behaviors in the weak- and strong-interaction
limits,16−19 i.e.

ρ ρ λ ρ[ ] ∼ [ ] + ′ [ ] + ···λ→W W W0 0 0 (2)

ρ ρ
λ

ρ[ ] ∼ [ ] + ′ [ ] + ···λ→∞ ∞ ∞W W W
1

(3)

with

ρ ρ ρ ρ[ ] = [ ] ′ [ ] = [ ]W E W E, 2x c0 0
GL 2

(4)

where Ex is the exact exchange, Ec
GL2 is the second-order

Görling-Levy (GL2)16 correlation energy, W∞[ρ] is the
indirect part of the minimum expectation value of the
electron−electron repulsion in a given density,18 and W′∞[ρ]
is the potential energy of coupled zero-point oscillations.19

The functionals W∞[ρ] and W′∞[ρ] have a highly nonlocal
density dependence, captured by the strictly correlated
electrons (SCE) limit,18−20 and their exact evaluation in
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general cases is a nontrivial problem. Notice that while the
form of the leading term W∞[ρ] in eq 3 rests on recent
mathematical proofs,21,22 the zero-point term W′∞[ρ] is a very
reasonable conjecture that has been confirmed numerically in
simple cases23 but lacks a rigorous proof. The λ → ∞
functionals can also be approximated by the much cheaper
semilocal gradient expansions (GEA) derived within the point-
charge-plus-continuum (PC) model24

Ä
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ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
∫ρ ρ ρ

ρ
[ ] = + |∇ |

∞W A B dr
r

r
r( )

( )
( )

PC 4/3
2

4/3
(5)
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ρ
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r

r( )
( )

( )
PC 3/2

2

7/6
(6)

with A = −9(4π/3)1/3/10, B = 3[3/(4π)]1/3/350,
π=C 3 /2, and D = −0.028957. For small atoms, it has

been shown that these PC approximations provide energies
quite close to the exact SCE values.18,19 More recently, new
approximate functionals inspired by the SCE mathematical
structure have been also proposed and tested.25−27 They retain
the nonlocality of SCE by using as a key ingredient some
integrals of the density, and their implementation in a self-
consistent scheme is still the object of ongoing work.
Different interpolation formulas have been employed to

obtain several XC functionals based on the adiabatic
connection formalism.15,17,19,24,28−30 Some of these functionals
have been recently tested against realistic physical chemistry
problems in order to investigate their performance and
understand the corresponding limitations.31−33 These func-
tionals are all size-extensive but not size-consistent when a
system dissociates into fragments of different species.
However, it has been recently shown that the size-consistency
error can be easily corrected at no additional computational
cost.33 All these tests have concerned only the quality of the
computed energies, whereas no information has been gathered
on the XC potentials delivered by the functionals.
Actually, the XC potential is a very important quantity since

it enters directly in the Kohn−Sham equations determining the
quality of the Kohn−Sham orbitals and energies as well as the
features of the electron density.34−52 Thus, any accurate XC
approximation should be able to yield not only precise energies
at given densities but also accurate XC potentials. However,
this fact is generally overlooked in most investigations of XC
approximations, which mainly focus on the energy properties
only. On the other hand, a few studies36,38−43,53−59 have
considered the problem of the XC potential showing that an
accurate description of both the energy and the potential can
be usually achieved only by high-rung approximations
(although some important exceptions can be found at the
meta-GGA level of theory60,61). The ability of an XC
functional to describe correctly the XC potential is therefore
a significant problem for DFT development.
In this paper, we consider some relevant XC functionals

obtained by interpolating between the two limits of eqs 2 and
3, studying their ability to describe the XC potential.
Obviously, this potential also depends on how the λ → ∞
limit of eq 3 is approximated. We thus start by comparing the
functional derivative of the PC model for the leading term,
W∞

PC[ρ] of eq 6, with the one from the exact SCE formalism for
small atoms. Since the PC model is a GEA (and not a GGA), it
diverges far from the nucleus. However, we find that in the

energetically important region, the PC functional derivative is a
rather good approximation of the SCE potential, at least when
evaluated on a given reference density (self-consistently the
two will give very different results20,62,63). Moreover, because
(due to the λ → 0 expansion) all the considered
approximations are complicated nonlinear functionals of the
Kohn−Sham orbitals and eigenvalues, full self-consistent
calculations have not been possible, regardless of how the λ
→ ∞ limit is treated. Thus, as explained in the next section,
the XC potentials have been computed for fixed reference
densities and compared to accurate reference potentials as well
as to the second-order Görling-Levy one. This approach was
already successfully utilized in some studies35,64 to investigate
the XC potentials properties. Although the procedure does not
provide access to the final self-consistent Kohn−Sham orbitals
and density, it allows anyway to study the quality of the
potential and the ability of each functional to reproduce its
most relevant features. This work is therefore a fundamental
first step toward the possible full self-consistent implementa-
tion of adiabatic-connection-based XC functionals.

■ POTENTIALS FROM ADIABATIC CONNECTION
MODELS

In this work we consider XC functionals based on different
adiabatic connection models (ACMs) that use the input
quantities of eqs 2 and 3, namely the exact exchange Ex, the
second-order Görling-Levy correlation energy Ec

GL2, the strong-
interaction limit of the density-fixed adiabatic connection
integrand W∞, and possibly the zero-point term W′∞. In a
compact notation, the XC functionals can be denoted as

= ′∞ ∞E f E E W W( , , , )xc x c
ACM ACM GL 2

(7)

where fACM is an appropriate nonlinear function for the given
ACM model. The exact expressions of the fACM functions
corresponding to the functionals considered in this work,
namely ISI,15 revISI,19 SPL,17 and LB,29 are given in Appendix
A. Notice that ISI and revISI depend on all four input
quantities, while SPL and LB do not depend on W′∞. The XC
potential corresponding to the functionals defined by eq 7 is

δ
δρ
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where

=
∂

∂
=

∂
∂
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E
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∂
∂ ′∞

′
∞

∞ ∞
D

f
W

D
f
W

,W W
ACM

ACM
ACM

ACM

(10)

and we used the short-hand notations
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δ
δρ

δ
δρ

= =v
E

v
E

r
r

r
r

( )
( )

, ( )
( )x

x
c

cGL2
GL2

(11)

For the functionals not depending on W′∞, i.e. SPL and LB,
we have DW′∞

ACM = 0. The derivatives of eqs 9 and 10 are
straightforward once the function fACM is fixed. The potentials
δW∞/δρ and δW′∞/δρ depend on how the λ → ∞ limit is
treated. For the PC model, they are standard gradient
expansion functional derivatives (see Appendix B). For the
exact case, they can be computed by integrating the SCE force
equation;18,20,62 see the subsection on the Potentials for the
Strong-Interaction Limit below.
Potentials for the Weak-Interaction Limit. The

calculations of vx and vc
GL2 require some attention. In this

work we have used the optimized effective potential (OEP)
method.54,65 Then, the potential vx or vc

GL2 (denoted with
general notation v in eq 12) is given by the solution of the
integral equation

∫ χ ′ ′ ′ = Λv dr r r r r( , ) ( ) ( )
(12)

where χ(r,r′) is the static linear-response function and
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∫∑ ∑ϕ δ

δϕ

ϕ ϕ δ
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ϵ − ϵ
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ϵ≠
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d

E
r r

r

r r
r r( ) ( )

( )

( ) ( )
( )

p
p

p q p

q q

p q p
p

2

(13)

with E being either the exact exchange or the second-order
Görling-Levy correlation energies, and ϕp and ϵp being the
Kohn−Sham orbitals and orbital energies, respectively. A
similar approach was used in ref 7, leading to the fully self-
consistent solution of double-hybrid functionals.
Computational Details. In our study we have considered

several atoms, He, Be, Ne, and Ar, and the H− and F− ions, as
well as the H2 and N2 molecules. For all these systems we have
determined the self-consistent exact exchange orbitals and
density. Then the GL2 correlation potential has been
computed, on top of exact exchange orbitals, in a one-step
nonself-consistent procedure. This was subsequently used to
generate the ACM potentials.
Exact exchange potential calculations have been carried out

with a locally modified version of the ACESII code.66 The
resulting exact exchange potentials are reported in the
Supporting Information.77 In order to solve the OEP equations
and determine the exchange (and GL2) potentials, we have
utilized the finite basis set implementation of the OEP method
from refs 54 and 55 with a seed Slater potential67 to ensure the
stable and correct behavior of the exchange potentials in the
asymptotic region. The same basis set has been used to expand
both the orbitals and the exchange and correlation potentials.
In particular, we have used an uncontracted cc-pVTZ basis
set68 for H2 and N2, a 20s10p2d basis set69 for He, an
uncontracted ROOS-ATZP basis set70 for H, Be, Ne, and F,
and for the Ar atom a modified basis set combining s- and p-
type basis functions from the uncontracted ROOS-ATZP70

with d- and f-type functions coming from the uncontracted
aug-cc-pwCVQZ basis set.53,71 The choice of the basis set was
mostly dictated by the need to ensure the best possible
expansion for both the wave functions and the OEP potential.
We thus believe that the basis sets employed in this work
provide a good compromise between an accurate description
of the potential and the numerical stability of the computa-

tional procedure (see, for example, Figure S677). For more
details see refs 54 and 55.
Successively we have computed, in a post-SCF fashion, the

XC potentials of the various ACM XC functionals (ISI,15

revISI,19 SPL,17 and LB;29 see Appendix A) using eq 8.
Similarly we have computed, in a one-step procedure based on
exact exchange orbitals, the GL2 potential as well as the other
OEP correlation potentials (OEP2-sc, OEP2-SOSb). In all
these potentials the single excited term has been neglected;
anyway this is expected to yield a negligible effect on the final
result.54

Potentials for the Strong-Interaction Limit. The exact
(or very accurate72) functional derivative of W∞[ρ] can be
computed for spherically symmetric densities using the
formalism and the procedure described in refs 18, 63, and
72. The potential is obtained by integrating numerically the
force equation

∑ρ
ρ
ρ

∇ [ ] = −
− [ ]

| − [ ] |=

v r
r f r

r f r
( )

( ; )
( ; )i

N
i

i
SCE

2
3

(14)

where the comotion functions fi(r;[ρ]), which are highly
nonlocal density functionals, portray the strictly correlated
regime, determining the positions of N−1 electrons as
functions of the position r of one of them,18,63,72 and the
boundary condition vSCE[ρ](|r| → ∞) = 0 is used. Once vSCE
of eq 14 has been computed, we then have the exact
relation62,72

δ ρ
δρ

[ ]
≡ = −∞ ∞W

v v v
r

r r r
( )

( ) ( ) ( )xc SCE H
(15)

where vH(r) is the Hartree potential.
We have computed vxc

∞(r) of eqs 14 and 15 for H−, Be, and
Ne, for the same densities as described in the Computational
Details section, using the comotion functions described in refs
18, 63, and 72, which are exact for N = 2 and very accurate (or
exact) for N > 2.72 Moreover, even when these comotion
functions are not optimal, the functional derivative of the
corresponding W∞[ρ] still obeys eqs 14 and 15.72

In Figure 1, we compare these exact (or very accurate) vxc
∞(r)

with the functional derivative of W∞
PC[ρ] for the three species.

We see that, as anticipated, since the PC model is a GEA, it
diverges at large internuclear distances, tending to minus
infinity (see Appendix B for more details), a feature that would
further prevent the performing of self-consistent calculations.
The exact vxc

∞(r), instead, displays the correct asymptotic
behavior ∝ − 1/r.18,62 Nonetheless, we see that in the region
where the density is significantly different from zero, the PC
model provides a very decent approximation to the exact
vxc
∞(r). In the next sections, we will then use the much cheaper
PC potentials, since we will always compute them on a
reference density, where they seem to give rather reasonable
results (with the exception of the region close and far from the
nucleus). This choice has been further validated by comparing
for a few cases the potentials obtained from the SPL and LB
models using the PC and SCE functional derivatives: in all
cases the differences between the two have been found to be
very small, of course with the exception of the asymptotic
region far from the nucleus.
There is at present no exact result available for the functional

derivative of the zero-point term W′∞[ρ], which is the object
of an ongoing investigation. For this reason, we will use again
the PC model, which also yields a potential that diverges, this
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time going to plus infinity, but only rather far from the nucleus
(see Figure 2 and Appendix B for more details).

■ RESULTS
In Figure 3 we show the correlation potentials corresponding
to different XC functionals (on the scale of the plot ISI and
revISI are hardly distinguishable; therefore, only the ISI curve

has been shown; the same applies to SPL and LB.). We recall
that all the methods considered in this work include the
exchange contribution exactly; therefore, only the correlation
part of the potential (vc

ACM = vxc
ACM − vx) is of interest for an

assessment of the methods. For comparison we have also
reported the correlation potential obtained via direct inversion
of the coupled cluster single double with perturbative triple
(CCSD(T)) density73 as well as the one obtained from
quantum Monte Carlo (QMC) calculations.74,75 Both
potentials are very accurate and are assumed here as
benchmark references. Note anyway that these potentials do
not stem from the exact exchange densities used to generate
the ACMs potentials but correspond to self-consistent
CCSD(T) or QMC densities. Nevertheless, we expect the
difference due to this issue to be almost negligible for the
purpose of this work.
The plots of Figure 3 show that, in all cases, the various

potentials have quite similar shapes. This indicates that for all
the ACMs the correlation potential is physically meaningful
and describes the main features of the exact potential.
Moreover, the ACMs potentials are generally closer to the
reference ones than GL2. This latter situation can be measured
quantitatively considering the integral error

∫ ρΔ = | − |v v v dr r r r( ) ( ) ( )c c c
RefACM ACM

(16)

where we use the CCSD(T) potential as reference (Ref), and ρ
is the exact exchange self-consistent density (i.e., the one used
to compute vc

ACM). The corresponding values are reported in

Figure 1. Comparison between the exact (or very accurate) functional
derivative of the leading term W∞[ρ] in eq 3, computed with the
strictly correlated electrons (SCE) formalism of eqs 14 and 15,18,63,72

and the functional derivative of the GEA approximation obtained
from the PC model of eq 5.

Figure 2. Functional derivative of W′∞[ρ], divided by the number of
electrons, obtained using the GEA approximation based on the PC
model of eq 6, for several atoms.

Figure 3. Correlation potentials obtained with different methods for
several atoms.
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Table 1, whereas a plot of the integrands for the Ne atom case
is shown in Figure 4. These data confirm that the ACMs

provide a significant improvement over GL2, yielding values of
ΔvcACM that are in most cases almost one-half those of GL2.
Moreover, Table 1 reports also the integral errors for some
accurate second-order OEP methods, namely OEP2-sc,8,10

OEP2-SOSb,54,55 and OEP2-SOS(opt),55 indicating that the
ACMs potentials are competitive with the best available OEP
methods. Finally, we find that in general ISI and revISI are
slightly better than SPL and LB, most probably due to
inclusion of the zero-point term W′∞[ρ].
An additional indication of the quality of the ACMs

potentials can come by the analysis of the effect they have
on the Kohn−Sham orbital energies. In particular, we have
considered the first-order perturbative variation of the energy
of the highest occupied molecular orbital (HOMO), i.e.

⟨H|vc
AMC|H⟩ with |H⟩ being the HOMO state, due to the

application of the potential vc
AMC. These data are reported in

Table 2 together with some reference values. These results
confirm the trends observed for the ΔvcACM, showing that all
the ACMs potentials yield HOMO energy variations in line
with OEP2-sc and OEP2-SOSb and close to the reference
values; on the other hand, GL2 yields quite overestimated
HOMO energy variations.
We remark that the improvement found for the ACMs with

respect to GL2 is particularly significant because it mainly
corresponds to a reduction of the GL2 overestimation of the
potential in the outer valence region. This feature is in fact one
of the main limitations that GL2 experiences in OEP Kohn−
Sham calculations, which leads to several problems including,
sometimes, the impossibility to converge OEP-GL2 Kohn−
Sham self-consistent calculations. Indeed, several modifications
of OEP-GL2, such as OEP2-sc, OEP2-SOSb, and OEP2-
SOS(opt), have been developed to account for this
problem.8,53−55,76 Thus, the partial correction of this drawback
from the ACMs is a very promising feature of these functionals
which allows them to yield potentials close to the accurate
OEP ones (see Figure S177 where we compare, for the Ne
atom, ISI and SPL with OEP2-sc, OEP2-SOSb, and OEP2-
SOS(opt) as well as with OEP-ccpt210).
As a further example we consider the case of the beryllium

atom which is known to be a rather extreme case where the
GL2 potential performs poorly, overestimating the correct
correlation potential, such that self-consistent OEP-GL2
calculations fail to converge. Thus, in Figure 5 we report the

various correlation potentials computed for beryllium (in
Figure S277 we report also the accurate second-order OEP

Table 1. Integral Error (ΔvcACM; See Eq 16) for Different
Potentials

He Ne Ar

ISI 0.0088 0.3734 0.1718
revISI 0.0113 0.3136 0.1583
SPL 0.0060 0.5083 0.2123
LB 0.0070 0.5778 0.2258
GL2 0.0212 0.8151 0.2886
OEP2-sc 0.0133 0.1900 0.1062
OEP2-SOSb 0.0170 0.2140 0.1710
OEP2-SOS(opt) 0.0102 0.1127 0.2339

Figure 4. Radial density-weighted absolute errors (see the integrand
of eq 16) for various potentials based on adiabatic connection models
as well as for GL2 and several second-order OEP potentials, in the
case of Ne atom.

Table 2. First-Order Variation of the Energy (eV) of the Kohn-Sham Highest Occupied Molecular Orbital (HOMO) as Due to
the Application of Different Correlation Potentialsa

⟨H|vcAMC|H⟩ ϵH − ϵH
OEPx

ISI revISI SPL LB GL2 GL2 OEP2-sc OEP2-SOSb ref

He 0.576 0.610 0.505 0.551 0.746 0.751 0.427 0.547 0.419
Ne 3.211 3.026 3.627 3.826 4.528 5.491 3.012 2.416 1.935
Ar 0.573 0.538 0.652 0.680 0.767 1.137 0.740 0.558 0.672

aThe right part of the table reports, for comparison, the difference between the self-consistent HOMO energy computed with some correlated
methods and the one obtained at the exact exchange level (ϵH − ϵH

OEPx). Reference values are obtained from inverted CCSD(T) calculations.

Figure 5. Correlation potentials obtained with different methods for
the beryllium atom.
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potentials for comparison). Inspection of the plots shows that
also in this difficult case the ACMs potentials, especially ISI
and revISI, improve substantially over GL2 being comparable
to the OEP2-SOSb and OEP2-SOS(opt) approaches. Note
also that the accurate OEP2-sc method instead yields an
underestimation (in absolute values) of the correlation
potential of the beryllium atom.
The analysis discussed above, evidenced the similarity of the

ACMs potentials with scaled GL2 ones.53−55 This finding is
not completely surprising if we inspect the magnitudes of the
different contributions forming the ACM potential in eq 8, i.e.
DEx

ACM, DEc
GL2

ACM, DW∞
ACM, and DW′∞

ACM (see Table 3). The data show in

fact that the main contribution to the potential of any of the
ACMs is a scaled GL2 component, with a magnitude of about
70%. This finding traces back to the fact that the ACMs are
effectively all-order renormalizations of the density functional
perturbation theory,15 thus they basically perform a “rescaling”
of the GL2 correlation contribution. This feature puts these
potentials not only in relation with the spin-opposite-scaled
OEP methods (OEP2-SOS), as mentioned above, but also
with the recently developed self-consistent OEP double-
hybrid7 method, which also shows a similar signature. Then,
the success of the later methods in self-consistent calculations
can be considered as a promising indicator for the quality of
the ACM potentials and the possible success of future self-
consistent calculations based on the ACM functionals.
We remark anyway that, despite the scaled GL2 being the

main component of the correlation potential of ACMs, other
contributions may also be present with a non-negligible effect.
This can be seen, for example, in Figure 6 where we plot the
quantity vc

ACM − DEc
GL2

ACMvc
GL2 for the Ne atom. The plot shows

that all the ACM potentials show relevant features in the core
regions (i.e., vc

ACM − DEc
GL2

ACMvc
GL2 ≠ 0), that possibly originate

from the larger correlation effects felt by core electrons,
implying a larger contribution from the DW∞

ACM component (see
also the subsection Potentials for the Strong-Interaction
Limit). This is more evident for ISI and revISI, whereas the
SPL and LB correlation potentials are slightly closer to scaled
GL2 potentials.

It is worth noting also that the “renormalization” effect of
the ACM correlation potentials will increase when systems
with stronger correlation are considered. Unfortunately, for
such systems the OEP equation needed to generate the GL2
potential cannot be generally solved; thus we had to limit our
investigation only to the simple case of the F− anion, to be
compared with the Ne atom. This comparison is shown in
Figure 7 for the case of the revISI correlation potential (other

ACMs behave similarly). From the plot it can be seen that for
the F− anion, where correlation effects are slightly larger than
in Ne, indeed a greater difference between the revISI and the
GL2 potentials is found. This fact is also confirmed by the
computed value of DEc

GL2
ACM that for F− is 0.583 (to be compared

with 0.683 in Ne, see Table 3); note also that DW∞
ACM is 0.030 for

F−, while it is 0.018 for the neon atom.
To conclude, in Figure 8 we report the correlation potentials

computed for two simple molecules, namely H2 and N2. In
these cases we have also used as a reference the correlated
potential obtained from relaxed CCSD(T) density observing
the same qualitative behavior as already found in atoms except
for some oscillations in the asymptotic region due to basis set
issues in the OEP calculation of vc

GL2. Thus, all the ACMs
provide a reduction of the correlation potential with respect to
GL2. In particular, ISI and revISI (not shown because it is very

Table 3. Values of the Partial Derivatives Appearing in Eq 8
for the Various ACM Correlation Functionals of Different
Atoms

DEx
ACM − 1 DEc

GL2
ACM DW∞

ACM DW′∞
ACM

He ISI −0.029 0.642 0.029 0.006
revISI −0.036 0.615 0.036 0.009
SPL −0.014 0.699 0.014
LB −0.012 0.757 0.012

Be ISI −0.030 0.617 0.030 0.005
revISI −0.038 0.570 0.038 0.007
SPL −0.011 0.726 0.011
LB −0.009 0.782 0.009

Ne ISI −0.014 0.724 0.014 0.002
revISI −0.018 0.683 0.018 0.003
SPL −0.005 0.819 0.005
LB −0.004 0.869 0.004

Ar ISI −0.007 0.079 0.007 0.001
revISI −0.010 0.751 0.010 0.001
SPL −0.002 0.873 0.002
LB −0.002 0.904 0.002

Figure 6. Difference between the correlation potentials of various
adiabatic connection models and the scaled second-order Görling
Levy correlation potential (vc

ACM − DEc
GL2

ACMvc
GL2) for the neon atom.

Figure 7. GL2 and revISI correlation potentials for the Ne atom and
the F− anion.
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similar to ISI) provide a slightly larger reduction than SPL and
LB (not shown because it is very close to SPL). Also here the
direct comparison with several correlated OEP potentials made
for nitrogen dimer (Figure S377) reveals a remarkably good
performance for all ACMs. The ISI and SPL give almost the
same potentials as OEP2-sc which is considered as the state-of-
the-art correlated OEP method.

■ CONCLUSIONS
We have studied the correlation potentials produced by
different adiabatic connection models to investigate whether
these methods are able to produce, besides reasonable
energies,31−33 also physically meaningful potentials. This is,
in fact, a fundamental issue in view of a possible future use of
the ACMs in self-consistent calculations.
Our results showed that indeed all the investigated

functionals are able to provide rather accurate correlation
potentials, with ISI and revISI being slightly superior to SPL
and LB. In particular, all the considered correlation potentials
display the correct features of the exact correlation potential
and reduce the overestimation behavior which is typical of the
GL2 method.8,78 Thus, all in all, the ACM-based correlation
potentials are comparable to those produced by some state-of-
the-art optimized effective potential methods (OEP2-sc,8,10

OEP2-SOS54,55).
These results suggest that it might be worth pursuing the

realization of self-consistent calculations using the ACM XC
functionals, which would provide a final assessment of their
quality. However, to reach this goal a few issues need first to be
solved. In particular, one needs to develop proper density
functionals for the λ → ∞ limit, in order to replace the
gradient expansions of eqs 5 and 6, which lead to divergences
in the potential. The functionals of refs 25−27 are already very

good candidates, although they pose new technical problems at
the implementation level due to their nonlocal density
dependence. If one wants to stay within gradient approx-
imations, then the PC GEA should be renormalized into
GGAs. Moreover, a proper OEP scheme, similar to the one
used for the implementation of self-consistent double hybrids,7

needs to be implemented to deal with the various terms
appearing in eq 8, which are both of implicit nonlocal and
explicit semilocal types. In addition, several numerical issues
would need to be taken into account, such as the stability of
the self-consistent solution with respect to the basis set and the
influence of the accuracy of the potential on the correlation
energy.

■ APPENDIX A: ADIABATIC CONNECTION MODELS
In this work we consider several ACMs. They main features of
each one are described below.

ISI Functional.15 The XC energy is
Ä

Ç
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SPL Functional.17 The XC energy is
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LB Functional.29 The XC energy is
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Figure 8. Correlation potentials of different adiabatic connection
models as well as of the second-order Görling-Levy (GL2) correlation
for the H2 (top) and N2 (bottom) molecules, plotted along the bond
axis. The vertical lines indicate the positions of the atoms in each
molecule.
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■ APPENDIX B: FUNCTIONAL DERIVATIVE OF THE
PC FUNCTIONALS

The functional derivative of eqs 5 and 6 with respect to the
density is

δ ρ
δρ

ρ ρ
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ρ
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In order to study which terms are responsible for the
divergence observed (see the subsection Potentials for the
Strong-Interaction Limit), we consider the asymptotic
expression79 for a density of N electrons bound by a total
positive charge Z, with r = |r|

ρ → ∞ ∼ β α−r r e( ) r (30)

with α = I2 2 , β = −− + 1Z N
I

1
2

, and I being the first

ionization potential (e.g., for the Ne atom α ≈ 2.5 and β ≈
−0.2). By plugging eq 30 into eq 28, one sees that the second

and third terms go to leading order like − β α
r e r3 3 ; however, the

second term is multiplied by a negative constant, namely −2B,
which determines the divergence to −∞ over the third term,
whose prefactor is B4

3
. Analogously, for eq 29, one sees that the

second and third terms, again, diverge with the same leading

order, which, in this case, is − β α
r e r6 6 . In this latter case, however,

the second term is multiplied by the positive constant −2D,
which determines the divergence to +∞ over the third term,
whose prefactor is D7

6
. Since all the ACM potentials calculated

in this work make use of the PC approximation for the strong-
interaction limit terms, they all show a negative divergence,
appearing “earlier” in the SPL and LB than in the ISI and
revISI models (as these latter also include the ingredient
δ ρ

δρ
′ [ ]∞W

r( )

PC

, which partially compensates the asymptotically

dominant term). Moreover, while this analysis applies to the
exact asymptotic density behavior, the use of Gaussian basis
sets worsens the divergence at large r.
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(36) Grabowski, I.; Teale, A. M.; Śmiga, S.; Bartlett, R. J. Comparing
ab initio density-functional and wave function theories: The impact of
correlation on the electronic density and the role of the correlation
potential. J. Chem. Phys. 2011, 135, 114111.
(37) Grabowski, I.; Teale, A. M.; Fabiano, E.; Śmiga, S.; Buksztel, A.;
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