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ABSTRACT: We have tested the original interaction-strength-interpolation (ISI)
exchange-correlation functional for main group chemistry. The ISI functional is
based on an interpolation between the weak and strong coupling limits and
includes exact-exchange as well as the Görling−Levy second-order energy. We
have analyzed in detail the basis-set dependence of the ISI functional, its
dependence on the ground-state orbitals, and the influence of the size-consistency
problem. We show and explain some of the expected limitations of the ISI
functional (i.e., for atomization energies) but also unexpected results, such as the
good performance for the interaction energy of dispersion-bonded complexes
when the ISI correlation is used as a correction to Hartree−Fock.

1. INTRODUCTION
Current approximations for the exchange-correlation functional
of Kohn−Sham (KS) density functional theory (DFT) work for
systems that are weakly or moderately correlated, as they are
based on information (exact or approximate) from the weakly
correlated regime, when the physical system is not too different
from the KS one. The idea of including information from the
opposite limit of infinite correlation dates back to Wigner,1,2

who approximated the correlation energy of the uniform
electron gas by interpolating between the limits of zero and
infinite interaction strength. Seidl and co-workers3,4 imported
this idea in the framework of KS DFT. They analyzed the
structure3,5 of the DFT limit of infinite coupling strength,
proposed a semilocal approximation for it,6 and built an
exchange-correlation (xc) functional by interpolating along the
adiabatic connection between zero and infinite interaction
strength (“interaction-strength interpolation,” or ISI). The
original ISI functional interpolates between exact ingredients at
weak coupling (exact exchange and second-order perturbation
theory) and approximate ingredients at infinite coupling
strength, given by the semilocal “point-charge plus continuum”
(PC) model.4,6

In recent years, the exact solution for the limit of infinite
interaction strength in DFT has been derived:7,8 it is given by a
highly nonlocal functional of the density and can be mapped
into a mathematical problem appearing in mass-transportation
theory.9,10 Comparison against these exact results showed that
the PC model (with a minor readjustment on the next leading
term8) is a rather accurate approximation for the xc energy at
infinite coupling strength,7,8 while its functional derivative

misses the nonlocal features of this limit needed to describe
many strong-correlation phenomena in DFT in a spin-restricted
framework.11−13 Another approximation for the strong-
coupling limit that retains some of its nonlocality (the
“nonlocal radius” model, or NLR) has been recently proposed
in ref 14 and used by Zhou, Bahmann, and Ernzerhof15 to
construct new xc functionals that use the information at infinite
coupling strength.
A formal drawback of the original ISI functional is that it is

size consistent only when a system dissociates into equal
fragments. This problem is shared by different nonlocal
methods in DFT (see, e.g., refs 16 and 17) and in particular
by the approximations based on a global interpolation (i.e.,
performed on quantities integrated over all space) along the
adiabatic connection, like the one of ref 18. For the latter, a
possible way to restore size consistency in the usual DFT
sense19,20 is to turn to models based on local interpolations
performed in each point of space,21 a route that is being
presently explored by different authors.15,22−26 An efficient
implementation of the ingredients needed for a local
interpolation along the adiabatic connection22 in the ISI spirit
is not yet available, and it is the object of ongoing work.
While a considerable amount of theoretical work on xc

functionals that include in an approximate or exact way the
strong-interaction limit has been done, benchmarking has been
restricted so far to atomization energies,4,15 ionization
potentials,15 or to simple paradigmatic physical11,13,27 and
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chemical22,28−31 models only. Very little is known about the
performance of such functionals for bigger systems and for
other chemical and physical properties and about technical
aspects such as their sensitivity to reference orbitals and their
basis-set dependence.
The purpose of the present work is to fill this gap, by starting

from a systematic study of the ISI functional in its original
formulation, for which all the ingredients are readily available.
This allows us to start to analyze quantitatively which effects are
well captured by a functional that includes the strong-coupling
limit, together with the practical consequences of the size-
consistency error for heterolytic dissociation, as well as to
examine restricted versus unrestricted calculations, and other
aspects such as sensitivity to the reference orbitals. Our main
aim is to provide valuable information for a future generation of
functionals based on local interpolations along the adiabatic
connection that can include the strong-coupling limit without
violating size consistency.15,22−26

As we see, our results show some of the expected limitations
of the original ISI functional, but also unexpected results, like
an excellent performance for the interaction energy of
dispersion-bonded complexes that definitely deserves further
study.

2. THEORETICAL BACKGROUND
The ISI xc functional3,4,6 is built by modeling the standard
density-fixed linear adiabatic connection integrand Wλ[ρ],

32

ρ ρ ρ ρ= ⟨Ψ | ̂ |Ψ ⟩ −λ λ λW V U[ ] [ ] [ ] [ ]ee (1)

where Ψλ[ρ] is the wave function yielding the density ρ and
minimizing ⟨Ψ|T̂ + λ V̂ee|Ψ⟩, and U[ρ] is the Hartree (or
Coulomb) energy, with a functional form Wλ
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and x = −4EGL2, y = W∞′ , and z = Ex − W∞. The ISI functional
is thus based on four ingredients: two come from the limit of
weak interaction of eq 2 expressed in terms of orbital and
orbital energies, namely, the exact exchange energy
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and the Görling−Levy33 second-order energy
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where ⟨··∥··⟩ denotes an antisymmetrized two-electron integral;
two are derived from the limit of strong coupling of eq 3:
W∞[ρ] is the indirect part of the minimum possible expectation
value of the electron−electron repulsion in a given density,7

and W∞′ [ρ] is the potential energy of coupled zero-point
oscillations of localized electrons.8 They are both highly
nonlocal density functionals that are presently expensive to
compute exactly.7,8,13,31,34,35 They are well approximated7,8 by
the semilocal PC model,6 which we use in this work,
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The parameters A = −1.451, B = 5.317 × 10−3, and C = 1.535
are determined by the electrostatics of the PC cell,6 while the
parameter D cannot be derived in the same way, and different
choices are possible. For example, we can fix D by requiring
that W∞′ [ρ] be self-interaction free for the H atom density.6

Another possible choice, which was adopted when the ISI
functional was first proposed and tested for atomization
energies, is to fix D by requiring that W∞′ [ρ] be exact for the
He atom density.4 At the time, however, the exact solution for
W∞′ [ρ] was not available, and the accurate W∞′ [ρ] for He was
estimated from a metaGGA functional. A few years later, when
the exact W∞′ [ρ] has been evaluated for several atomic
densities, it has been found that the metaGGA values were
not accurate enough.8 The parameter D has then been changed
and fixed by using the exact W∞′ [ρ] for the He atom. This
choice, corresponding to D = −2.8957 × 10−2, improves
significantly the agreement between the PC model for W∞′ [ρ]
and the exact values for several atomic densities,8 and it is the
one we use in this work.
To see how the limits of eqs 2 and 3 are included in the ISI

functional of eq 5, we can expand Exc
ISI[ρ] in a series for small

EGL2,
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showing that ISI includes the exact-exchange and recovers
second-order perturbation theory.
The opposite limit of strong correlation is normally signaled

by the closing of the energy gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO), which usually makes appear a
broken symmetry solution with lower energy. If we do not
allow symmetry breaking, the gap closes, implying that EGL2 →
− ∞ and
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The first two terms, W∞[ρ] + 2 W∞′ [ρ], give the xc energy in
the limit of strong coupling, which is the sum of a purely
electrostatic indirect part (W∞[ρ]) and electronic zero point
oscillations (the factor two in front of W∞′ [ρ] accounts for the
zero point kinetic energy8 and comes from the integration of
the term ∼ λ−1/2 in eq 3). The last term in eq 12 is dependent
on the interpolating function and can change if we choose
different forms (see, e.g., the ones of refs 8 and 36).
If the four ingredients Ex, EGL2, W∞, and W∞′ are size

consistent, then the ISI xc functional is size consistent only
when a system dissociates into equal fragments, as it can be
easily derived from eq 5. A detailed and quantitative analysis of
the problem is reported in Section 5.1.
We should notice, however, that within the less usual

restricted framework for open shell fragments, which seems
crucial to capture strong correlation without introducing
artificial magnetic order and is the present focus of a large
theoretical effort,24−26,37 size consistency of the Ex and EGL2 is
lost,38 and usually EGL2 → − ∞ at dissociation. In this case, the
ISI xc functional stays finite and tends to the expression of eq
12). In this work, we have tested the ISI functional following
the standard procedure of allowing spin-symmetry breaking
(for a very recent review on spin symmetry breaking in DFT
see ref 39), and we discuss only briefly paradigmatic
calculations (the H2 and N2 dissociation curves) in a spin-
restricted formalism. It is however clear from eq 12 that the ISI
xc functional is not able to dissociate a single or multiple bond
properly in a spin-restricted framework since eq 12 will not
provide the right energy in this limit. The ISI accuracy in the
usual unrestricted KS (or Hartree−Fock) formalism are less
easy to predict, and its analysis is the main object of this work.

3. COMPUTATIONAL DETAILS
The calculations with the ISI xc functional defined by eqs 5−10
have been performed in a post-self-consistent-field (post-SCF)
fashion, using reference orbitals and densities obtained from
different methods, namely, DFT calculations using the
Perdew−Burke−Ernzerhof (PBE40), the hybrid PBE
(PBE041 , 42) , and the hybr id Becke-ha l f -and-ha l f
(BHLYP43−45) exchange-correlation functionals and the
localized Hartree−Fock (LHF) effective exact exchange
method46 and the Hartree−Fock (HF) method.
In different parts of the paper, we consider the ISI correlation

energy, which is defined, as usual in the DFT framework,47 as
Ec
ISI = Exc

ISI − Ex, where Exc
ISI and Ex are the ISI xc energy (eq 5)

and the exact exchange energy (eq 7), respectively. Note that
this definition of the ISI correlation energy is well justified since
the ISI xc functional includes the full exact exchange.4

Unless otherwise stated, all energies have been extrapolated
to the complete basis set limit as described in Section 3.1, using
data from calculations performed with the Dunning basis set
family cc-pVnZ (n = 2,...,6).48−51 For spin-polarized systems, a
UHF formalism has been employed in the self-consistent
calculations. All calculations have been performed using a
development version of the TURBOMOLE program pack-
age.52,53

To assess the performance of the ISI xc functional in practical
applications, we considered the following set of tests:

Thermochemistry Data Set. This contains atomization
energies (AE6,54,55 G2/9756,57), ionization potentials (IP1358),
electron and proton affinities (EA1358 and PA1259), barrier
heights (BH7659−62 and K955,63), and reaction energies
(BH76RC59−62 and K955,63) of small main-group molecules.

Noncovalent Interactions Data Set. This contains
interaction energies of noncovalent complexes having hydrogen
bond (HB664), dipole−dipole (DI664), charge-transfer
(CT764), dihydrogen-bond (DHB2365), and various
(S2266,67) character.

3.1. Basis Set Dependence. The ISI correlation energy
formula contains the GL2 correlation energy of eq 8. The latter
is well known to exhibit a relevant basis set dependence as well
as a slow convergence to the complete basis set (CBS) limit.
Thus, a similar behavior can be expected also for the ISI
correlation energy. Nevertheless, because the ISI energy also
includes other input quantities, whose basis set dependence is
different from that of GL2, and because all the input quantities
enter nonlinearly in the ISI formula, it is not simple to derive
analytically the ISI basis set dependence. This situation is
depicted in Figure 1, where we report, for the F atom, the basis
set evolution of the different input quantities of the ISI energy
as well as of the ISI correlation energy itself.

For this reason, it is not convenient trying to derive the ISI
basis set behavior starting from the assumed behavior of GL2
and other input quantities, as given by popular basis set
interpolation−extrapolation formulas.68−73 Instead, it is more
practical to consider the basis set evolution of the ISI
correlation energy as a whole. To this end, in analogy with
previous works on basis set extrapolation,69,70,73 we consider
the following ansatz

= ∞ + α−E n E An[ ] [ ]c c
ISI ISI

(13)

where the notation [n] indicates that the energy is computed
with an n-zeta quality basis set (here, specifically, the cc-pVnZ
basis set), A is a system-dependent constant, and α is an
exponent determining the strength of the basis set dependence.
Equation 13 provides an accurate fit for the ISI correlation
energies of different systems as we show in Figure 2 where we

Figure 1. Variation with the basis set (cc-pVnZ) of the various input
quantities (in Ha) used to compute the ISI correlation energy, here for
the F atom. The black square at 1/n = 0 indicates the extrapolation
obtained applying eq 13.
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report, for some example systems, the ISI correlation energies
computed with several basis sets and the corresponding fit
obtained from eq 13. Note also that, as shown in Figure 1, eq
13 reproduces correctly the CBS extrapolated value of the ISI
correlation energy as computed using the extrapolated values of
all input ingredients.
Use of eq 13 allows us to obtain accurate CBS-ISI energies.

However, a more practical approach is to use eq 13 into a two-
point scheme68,69,73 to have the extrapolation formula

∞ = −
−

α α

α αE
E n n E m m

n m
[ ]

[ ] [ ]
c

c cISI
ISI ISI

(14)

where n and m label two selected basis sets. In this work, we
considered n = 5 and m = 4 (for basis sets smaller than cc-
pVQZ we could not avoid numerical noise in some cases) and
fixed the parameter α = 2.2475 by fitting to the accurate CBS
ISI correlation energies of atoms He−Ar, obtained by applying
eq 13 to the full set of data corresponding to n = 4,...,6. The
calculations have been performed in a post-SCF fashion using
LHF orbitals (almost identical results have been obtained using
Hartree−Fock orbitals). Note that the optimized value of α is a
bit larger than the corresponding ones obtained in ref 74 for
MP2 and CCSD (1.91 and 1.94, respectively). This indicates
that the ISI correlation converges slightly faster than the MP2
and CCSD ones to the CBS limit, possibly because it benefits
from the fast convergence of the pure density-dependent
contributions.
A test of eq 14 is reported in Figure 3 where we show the

errors on ISI absolute correlation energies (upper panel) and
atomization correlation energies (lower panel) computed with
different basis sets, as compared to CBS reference ones, i.e.,
Ec
ISI[∞] of eq 13 fitted to the data with n = 3,...,6 with eq 13.

The results obtained using eq 14 are labeled as E-45 in the
figure. For the absolute correlation energies, we see that even at
the cc-pV6Z level errors of about 10 mHa can be expected,
while only energies obtained via the extrapolation formula of eq
14 show accuracies of about 1 mHa. For the atomization
correlation energies, we deal with energy differences. Therefore,
error compensation effects are quite relevant, especially for the
smallest basis sets. Thus, the errors are close or lower than 10
mHa even for the cc-pVTZ basis set. Nevertheless, accurate

results (about 1 mHa) can be obtained systematically only
using at least a cc-pV5Z basis set or, even better, via the
extrapolation formula of eq 14.

4. RESULTS
4.1. Role of the Reference Orbitals. The ISI correlation

functional is a complicated orbital-dependent nonlinear func-
tional. Thus, a stable self-consistent implementation is a
complicated task going beyond the scope of this paper. Here,
the ISI correlation is employed in a post-SCF scheme, where
the ground-state orbitals and density are computed using a
simpler approach and then used to evaluate the ISI correlation
(and also the exact exchange contribution).
The relevance of the reference density and orbitals for

different DFT calculations has been pointed out in several
works in the literature.75,76 Therefore, it appears important to
assess the reliability of different reference orbitals for the
calculation of the ISI correlation. Furthermore, because the ISI
functional is including the GL2 correlation energy as an input
ingredient, the orbital energies, and in particular the HOMO−
LUMO gap, can be expected to play a major role (see
discussion in Section 5.2). Hence, we take into account
reference ground-state orbitals computed with the generalized
gradient xc approximation of Perdew−Burke−Ernzerhof
(PBE),40 with the hybrid functionals PBE041,42 and BH-
LYP,43−45 which include 25% and 50% of exact exchange,
respectively, with the optimized effective potential named
localized Hartree−Fock (LHF)46 and with the Hartree−Fock
(HF) method. Note that the inclusion of larger fractions of
nonlocal Hartree−Fock exchange yields increasingly large
HOMO−LUMO gaps, which are also effectively used in
double-hybrid functionals.77 We remark that the LHF method
is instead a de facto exact exchange Kohn−Sham approach. As
such, it gives significantly smaller values of the HOMO−
LUMO gap than Hartree−Fock. Moreover, it may provide a
better approximation of the self-consistent ISI ground-state
density and orbitals than approximate functionals or the
Hartree−Fock method (we recall that in general correlation
contributions to the density and orbitals are rather small78−81).

Figure 2. Evolution of the ISI correlation energy of different test
systems with basis set. The red dashed lines denote interpolations
obtained using eq 13. Figure 3. Deviations of the ISI correlation energies (in mHa)

computed with various basis sets from the benchmark CBS ones.
Absolute correlation energies (upper panel) and atomization
correlation energies (lower panel).
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Anyway, we cannot exclude that the self-consistent ISI potential
may display non-negligible differences with respect to the LHF
(or the exact exchange) one. These differences might concern
especially a reduction of the HOMO−LUMO gap that will
induce a lowering of the total xc energy (note, however, that for
the ISI functional a complete collapse of the HOMO−LUMO
gap is not likely because, unlike in the GL2 case,82 the large
increase in kinetic energy associated with it cannot be
compensated by the divergence of the correlation energy,
which is bounded from below in ISI) and cases where static
correlation is rather important.
In Table 1, we report the ISI correlation energies (in absolute

value) obtained using different reference ground-state densities
and orbitals (see also Figure 4). The corresponding GL2
energies are also listed in order to compare to the ISI ones (a
star is appended to the mean absolute errors reported in Table

Table 1. Total Correlation Energies (in mHa, with opposite sign) from Semilocal DFT Functionals (LYP, PBE, PBEloc, all
using PBE orbitals), ISI, and GL2 Methods Calculated Using Different Reference Ground-State Orbitalsa

correlation: LYP PBE PBEloc ISI GL2

orbitals: PBE PBE PBE PBE PBE0 BHLYP LHF HF PBE PBE0 BHLYP LHF HF ref

closed-shell atoms
He 43.7 41.1 33.8 44.3 40.9 38.3 41.8 34.5 52.3 46.9 42.8 48.4 37.4 42
Ne 383.1 347.1 358.3 433.6 400 375.8 406.5 338 500.3 452.9 419.8 462.6 370.1 391
Ar 751.5 704.4 757.4 709.4 658.3 618.8 696.2 556.5 723.1 663.1 619.8 708 558.2 723
ME 7.4 −21.1 −2.2 10.4 −18.9 −41.0 −3.8 −75.7 39.9 2.3 −24.5 21.0 −63.4
MAE 12.7 21.1 25.1 19.5* 24.9* 41.0* 14.2* 75.7 39.9 42.2 44.3 31.0 63.4*

open-shell atoms
C 158.3 144.3 139.8 145.8 129.7 118.2 138 102.1 178.6 152.4 135 166.3 112.7 156
N 191.9 179.9 176.4 181.9 166.2 154.4 172.5 136.6 217.3 192.9 175.6 203.2 151.3 188
O 256.6 235.2 234.8 251.1 230.5 215.4 237 191.7 303.2 270.4 247.7 281.4 214.2 255
F 321 292.6 297.4 328.4 303.1 284.6 309.6 255.4 398.4 357.7 329.5 368.7 287.6 323
Si 529.2 484.2 516.8 515.3 474.5 444.4 498.9 395.2 518.3 470.3 446.3 508.8 393.5 505
P 566.4 526.5 564 544.4 504.1 473.6 531.6 424.5 553.3 505.5 480.6 543.3 426.7 540
S 627.7 584.1 626.1 592.1 547.5 514.4 575.4 459.8 600.9 546.9 517.9 585.8 456.6 603
Cl 689.7 644.5 691.6 640.2 592.8 557 623.8 499.3 658.5 600.1 559.3 638.6 501.3 664
ME 13.4 −17.8 1.6 −4.4 −35.7 −59.0 −18.4 −96.2 24.3 −17.2 −42.8 7.8 −86.3
MAE 13.9 17.8 20.0 9.4* 35.7 59.0 18.4 96.2 26.2 31.0* 44.4* 18.4 86.3*

closed-shell molecules
H2 38.2 42.9 37.4 38.4 35 32.2 36.9 28 53.2 46.3 41.2 50.4 34.3 41
NH3 318 314.2 310.8 371.2 337.2 312.1 354.7 271.9 463.3 406.7 367.6 436.3 309.4 340
CH4 295 300 292.5 315.8 287.3 265.1 304.5 230.2 391.5 344.9 310.8 373.5 261.1 299
H2O 340.4 324.8 325.5 416.1 378.1 350.7 393.8 307 514.7 452.5 410.2 478.7 347.6 371
FH 362.2 335.1 340.4 439.6 400.8 373 412.1 329.6 528.9 469.1 428.2 486.8 368.2 389
HCN 464.8 439.7 437.8 604.4 536.8 488 561 414.3 773.8 655.2 577.1 714.7 470.1 515
CO 485.2 448.4 451 627.4 558.1 508 586.3 434.1 787.5 670.7 593 718.2 487.9 535
N2 484.2 451.5 452.5 644.5 574.5 523.8 612.4 446.1 821 699.3 618.7 766.2 505.8 549
C2H4 498.7 493.7 486.8 568.9 511.7 468.6 543.6 402.7 709.3 614.6 548.4 668.3 454.8 480
H2CO 540.7 514.4 514.6 673.8 602.9 550.9 632.4 473.6 844.5 725.1 644.6 775.3 534.3 586
HOOH 636.7 598.5 604.7 818.2 736.2 677.4 775.1 586.3 1023.1 885.6 794.1 951.3 663.2 711
F2 675.5 612.7 627 882.2 790.8 727 833 631.2 1081 934.4 838.7 1003.2 705.3 757
SiH2 598.3 553.8 582.6 609.4 553.8 513.4 586.8 452.5 615.9 548.8 512.1 588.2 455.3 567
PH3 676.7 642.7 677 696.6 637.1 591.4 675.6 522.3 719.9 646.1 591.4 693.8 522.8 652
SO2 1257.5 1171.3 1227.6 1570.3 1399.7 1278.6 1467.5 1103.5 1813.3 1559.2 1391.1 1659.4 1164.5 1334
ClF 1047.6 970.8 1028.1 1158.3 1049.8 971.4 1104 855.2 1262.2 1118.7 1019.3 1190.6 878.6 1063
HCl 727.6 686.2 733.5 720.2 664 621.4 703.9 554.7 740.9 673.1 623.1 721.6 557.5 707
ME −26.4 −58.5 −45.1 74.1 9.3 −37.8 40.4 −109.0 191.1 91.4 24.3 140.0 −69.1
MAE 37.6 60.5 53.8 74.4* 21.6* 37.8* 41.3* 109.0 191.1 98.3 52.9 140.0 69.1*

overall statistics
ME −11.4 −42.9 −27.1 44.9 −6.6 −44.2 18.9 −101.8 127.2 50.8 −0.1 89.5 −73.4
MAE 28.2 44.1 41.1 49.9* 26.0* 44.2* 31.8* 101.8 127.8 73.0 49.6 93.6 73.4*

aReference data are taken from ref 86. The last lines report the mean error (ME) and the mean absolute error (MAE) for each case; a star is
appended to the MAEs to indicate, for each choice of the reference orbitals, the best method between ISI and GL2.

Figure 4. Errors on absolute ISI correlation energies (mHa) calculated
using different reference ground-state densities and orbitals.
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1 to indicate, for each choice of the reference orbitals, the best
method between ISI and GL2). We recall that the GL2 and ISI
results are extrapolated to the CBS limit, as described in eq 14
(for GL2, we used eq 13 with cc-pVQZ and cc-pV5Z results
and the optimized value α = 2.8). As already discussed, the
expected accuracy of such an extrapolation is ≲10 mHa (this
explains the fact that for a few cases, e.g., Si, S, and SiH2 using
PBE0 orbitals, we have |EcISI| > |Ec

GL2|, whereas by construction it
holds |EcISI| ≤ | Ec

GL2|). Table 1 also shows the correlation
energies computed with some popular semilocal generalized-
gradient approximation (GGA) functionals (namely, the Lee−
Yang−Parr (LYP),45 PBE, and PBE with localization
(PBEloc)83 functionals), in order to provide a comparison for
the expected accuracy of standard DFT calculations. The
correlation energies for GGA functionals have been computed
using the cc-pV5Z basis set and the PBE self-consistent orbitals.
Note that GGA correlation functionals include only dynamical
correlation,84,85 whereas the ISI method includes both
dynamical and static correlation.
We see that the results depend rather importantly on the

used reference ground-state orbitals. This indicates that any
non-self-consistent use of the ISI functional must be considered
with the due caution, while only self-consistent calculations
could give definitive information on the real quality of the ISI
energy. However, the self-consistent implementation of the ISI
functional is an extremely hard task. On the other hand, using
reference orbitals which are simpler to compute, in order to
evaluate ISI functional non-self-consistently, may offer a more
pragmatic approach that can still provide interesting
information on this method. For this reason, we consider this
analysis in the following.
A first inspection of the overall results, i.e., the MAE in the

overall statistics at the bottom of the table, shows that the best
ISI results are found using PBE0 and LHF orbitals (overall
mean absolute errors (MAEs) of 26.0 and 31.8 mHa,

respectively). We remark that these results are of similar
quality as those of the semilocal DFT functionals: the MAE of
the best GGA functional (LYP) is 28 mHa. On the other hand,
the use of the PBE orbital leads to overestimated absolute ISI
correlation energies, while the use of HF or BH-LYP orbitals
yields largely underestimated absolute energies. Similar trends
are obtained for the underlying GL2 (MP2 in the case of HF)
correlation energies. It is interesting to see that ISI strongly
improves over GL2 for PBE, PBE0, and LHF; an opposite
trend is found for HF, while no relevant differences are found
for BH-LYP.
A more detailed analysis of the different systems can be

obtained by inspecting the statistics reported for different
classes of systems as well as inspecting Figure 4 which reports
the errors on the absolute ISI correlation energies for all the
systems. The plot clearly shows that the use of Hartree−Fock
orbitals leads to an underestimation of the absolute correlation
for all systems. Instead, when LHF and PBE orbitals are
considered, atomic correlation energies are computed with
quite good accuracy, but molecular correlation energies are
significantly overestimated. This finding has an important effect
on the calculation of atomization correlation energies as shown
in Table 2. In this case the smaller errors are found for HF-
based calculations, which benefit from a large error cancellation
effect; indeed, as shown in Figure 4, molecules and atoms are
underestimated by about the same quantity. On the contrary,
for all other reference orbitals, an important overestimation of
the absolute ISI correlation energy is observed. Note that, in
any case, the ISI correlation atomization energies computed for
the present test set are always better than the corresponding
GL2 correlation atomization energies, yielding MAEs of 138.5,
92.5, 62.4, 116.5, and 23.7 mHa for PBE, PBE0, BHLYP, LHF,
and HF orbitals, respectively. Moreover, the HF-ISI results are
also almost 3 times better than those obtainable by semilocal

Table 2. Correlation Atomization Energies (mHa, with opposite sign) from Semilocal DFT Functionals (using PBE orbitals) As
Well As ISI and GL2 Methods Calculated Using Different Reference Ground-State orbitalsa

correlation: LYP PBE PBEloc ISI GL2

orbitals: PBE PBE PBE PBE PBE0 BHLYP LHF HF PBE PBE0 BHLYP LHF HF ref

H2 38.2 42.9 37.4 38.4 35.0 32.2 36.9 28.0 53.2 46.3 41.2 50.4 34.3 41.0
NH3 126.1 134.3 134.4 189.3 171.0 157.7 182.2 135.3 246.0 213.8 192.0 233.1 158.1 152.0
CH4 136.7 155.7 152.7 170.0 157.6 146.9 166.5 128.1 212.9 192.5 175.8 207.2 148.4 143.0
H2O 83.8 89.6 90.7 165.0 147.6 135.3 156.8 115.3 211.5 182.1 162.5 197.3 133.4 116.0
FH 41.2 42.5 43.0 111.2 97.7 88.4 102.5 74.2 130.5 111.4 98.7 118.1 80.6 66.0
HCN 114.6 115.5 121.6 276.7 240.9 215.4 250.5 175.6 377.9 309.9 266.5 345.2 206.1 171.0
CO 70.3 68.9 76.4 230.5 197.9 174.4 211.3 140.3 305.7 247.9 210.3 270.5 161.0 124.0
N2 100.4 91.7 99.7 280.7 242.1 215.0 267.4 172.9 386.4 313.5 267.5 359.8 203.2 173.0
C2H4 182.1 205.1 207.2 277.3 252.3 232.2 267.6 198.5 352.1 309.8 278.4 335.7 229.4 168.0
H2CO 125.8 134.9 140.0 276.9 242.7 217.3 257.4 179.8 362.7 302.3 261.9 327.6 207.4 175.0
HOOH 123.5 128.1 135.1 316.0 275.2 246.6 301.1 202.9 416.7 344.8 298.7 388.5 234.8 201.0
F2 33.5 27.5 32.2 225.4 184.6 157.8 213.8 120.4 284.2 219.0 179.7 265.8 130.1 111.0
SiH2 69.1 69.6 65.8 94.1 79.3 69.0 87.9 57.3 97.6 78.5 65.8 79.4 61.8 62.0
PH3 110.3 116.2 113.0 152.2 133.0 117.8 144.0 97.8 166.6 140.6 110.8 150.5 96.1 112.0
SO2 116.6 116.8 131.9 476.0 391.2 333.4 418.1 260.3 606.0 471.5 377.8 510.8 279.5 221.0
ClF 36.9 33.7 39.1 189.7 153.9 129.8 170.6 100.5 205.3 160.9 130.5 183.3 89.7 76.0
HCl 37.9 41.7 41.9 80.0 71.2 64.4 80.1 55.4 82.4 73.0 63.8 83.0 56.2 43.0

ME −35.8 −31.8 −29.0 82.0 54.0 34.0 68.2 5.2 137.8 91.9 60.4 114.8 20.9
MAE 38.3 39.3 35.3 82.3* 54.7* 35.1* 68.7* 12.7* 137.8 91.9 60.5 114.8 23.6

aReference data are taken from ref 86. The last lines report the mean error (ME) and the mean absolute error (MAE) for each case; a star is
appended to the MAEs to indicate, for each choice of the reference orbitals, the best method between ISI and GL2.
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DFT functionals (the best being PBEloc with a MAE of 36
mHa).
4.2. Total Atomization Energies. In Table 3, we report

the total atomization energies. We compare the ISI results to
HF+GGA correlation approaches. Note that in the latter
methods no error cancellation between exchange and
correlation occurs, and static correlation is not considered.84,85

Thus, HF+GGA calculations give much worse results than
conventional GGA xc approaches. However, here they can be
used to assess the quality of the ISI results. ISI-HF has an MAE
of only 11.7 mHa which is 4 times better than HF+GGA.
Conversely, ISI-LHF largely overestimates atomization ener-
gies, yielding an absolute accuracy close to the HF+GGA
(which, on the other hand, underestimates the atomization
energies.83)
We note that the present results for ISI atomization energies

are slightly different from the ones reported in the original ISI
publication.4 This is due to the different choice of the
parameter D in eq 10, which has been fixed here by using
the exact value of W∞′ [ρ] for the He atom density8 instead of
the one estimated from a metaGGA functional used in ref 4,
and due to the different basis set used (recall that in the present
work we used extrapolation toward the complete basis set
limit).
4.3. Main-Group Chemistry Benchmark. To assess the

practical applicability of the ISI functional to main-group
chemistry, we have performed a series of tests involving
different properties of interest for computational chemistry. We
have restricted our study to ISI calculations employing HF and
LHF reference orbitals (hereafter denoted as ISI-HF and ISI-
LHF, respectively). This choice was based on the fact that, as
explained in Section 4.1, ISI-HF is expected to yield the best
performance for these tests (according to the results of Table
2), while ISI-LHF provides the best approximation for the

performance of self-consistent ISI calculations. For comparison,
we report also the MP2 and B2PLYP77 results, which are based
on GL2 energies, as well as the performance of calculations
using the popular PBE functional40 and of the Hartree−Fock
exchange coupled with the semilocal PBEloc correlation83 (HF
+PBEloc). The latter is a simple approach adding semilocal
dynamical correlation to Hartree−Fock and can give
information on the possible accuracy of “standard” DFT
methods when used together with exact exchange; we remark
anyway that much improved results can be obtained by more
sophisticated DFT approaches including static and/or strong
correlation treatments.24,87

In the upper part of Table 4, we report the mean absolute
errors (MAEs) for several standard tests concerning
thermochemical properties. In the last line of Table 4, we
report, for each method X, the relative mean absolute error
(RMAE) with respect MP2, i.e.,

∑=RMAE
MAE

MAE
X

i

i
X

i
MP2

(15)

where i indicates the different tests.
The results clearly show that ISI-LHF often gives the largest

MAEs, with a RMAE of 4.1. Significantly better results are
obtained by ISI-HF calculations (RMAE = 1.7). However, the
performance for barrier heights (BH76 and K9) is quite poor
and even worse than that obtained by adding a simple semilocal
correlation to Hartree−Fock.83,88 We note also that for this
property Hartree−Fock- and LHF-based ISI calculations yield a
quite similar performance. On the other hand, ISI-HF yields the
best results for the PA13 test and the S22 test.
When the focus is on noncovalent interactions (bottom part

of Table 4), ISI-HF performs quite well for both hydrogen
bond (HB6) and dipole−dipole (DI6) interactions having a

Table 3. Total Atomization Energies (mHa, with opposite sign) Form Semilocal DFT Functionals (using PBE orbitals) As Well
As from ISI Methods Calculated Using Different Reference Ground-State Densities and Orbitals. Reference data are taken from
ref 86a

method: HF+LYP HF+PBE HF+PBEloc ISI

orbitals: PBE PBE PBE PBE PBE0 BHLYP LHF HF ref

H2 172.3 164.5 163.8 171.2 168.2 165.5 170.5 161.6 174.5
NH3 446.4 436.6 443.9 506.1 489.8 476.8 500.4 455.5 475.5
CH4 660 655 661.8 689.3 678.7 668.9 687.4 651.4 626
H2O 332.1 325.9 331.9 411 395 383 404 363.6 371
HF 195.6 190.9 193.9 264.2 251.6 242.6 256.6 228.7 216.4
HCN 431.8 426.7 435.2 586.1 554 530.4 459.3 492.7 496.9
CO 348.5 347 354.6 500.9 471.8 450.9 486 418.5 413.8
N2 284.3 275.6 283.6 457.4 422.2 396.9 446.5 356.7 363.7
C2H4 864.6 863.6 875.6 951.6 930.3 912.4 945.7 881 898.8
H2CO 536 533.1 543.1 676 646.9 625 662.4 590 596.7
HOOH 333.9 326.7 338.4 516.7 481 454.8 505 413.4 428.9
F2 25.8 31.8 27.1 156.9 120.3 96.5 146.9 61.1 62.5
SiH2 245.5 233.9 235.1 265.1 252.7 244.4 261.7 233.6 242.9
PH3 385.2 373.1 377.2 418.2 402.8 390.5 414.2 372.7 387.2
SO2 290.1 290.4 305.4 624.6 551.3 502.3 580.7 433.9 414.2
ClF 50.5 47.3 52.6 193.8 162.4 141.8 178.3 114 100.1
HCl 160.6 158.4 161 202.4 194 187.3 202.3 178.1 171.2

ME −42.9 −48.4 −41.8 +67.7 +43.1 +25.3 +51.0 −2.0
MAE 47.2 51.8 46.0 68.1 43.8 26.3 55.9 11.7

aThe last lines report the mean error (ME), the mean absolute error (MAE), and the mean absolute relative error (MARE) for each case. 1mHa =
0.62751 kcal/mol.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00713
J. Chem. Theory Comput. 2016, 12, 4885−4896

4891

http://dx.doi.org/10.1021/acs.jctc.6b00713


comparable accuracy as MP2 and B2PLYP. The ISI-HF
functional outperforms other approximations for the S22 test,
which contains different kinds of biology relevant noncovalent
complexes having hydrogen-bond, dipole−dipole, and dis-
persion character.
4.4. A Closer Look at Dispersion Complexes. The small

error for the S22 test set suggests that ISI-HF may be more
accurate than other approaches (e.g., B2PLYP) in the
description of dispersion complexes. As further evidence, we
report in Figure 5 the signed error obtained from ISI-HF, MP2,
and B2PLYP in the calculation of the interaction energy of a
collection of different dispersion complexes, which includes the
dispersion-dominated S22 cases as well as additional test cases
from the literature.89−92 It can be seen that, indeed, ISI-HF
results are always very accurate (≲1 kcal/mol), whereas for the

dimers of aromatic molecules MP2 (B2PLYP) largely over-
estimate (underestimate) the interaction energy.
In Figure 6, we also report the interaction energy curves for

Ne−Ne and C2H4−C2H4, which show again that ISI-HF

accurately captures dispersion interactions. Further analysis and
discussion of these results are reported in Section 5.3.

4.5. Static orrelation. One of the purposes of including the
strong-coupling limit into approximate functionals is the hope
to capture static correlation without resorting to symmetry
breaking. However, it is already clear from eq 12 that the ISI
functional will not dissociate correctly a single or multiple bond
in a restricted framework. In fact, as the bond is stretched, the
ISI xc energy of eq 12 will be quite different than the one for
the two equal open shell fragments. The problem is that only
the electrons involved in the bonds should be strongly
correlated. The rest of the fragment should be in the usual
weak or intermediate correlation regime, but the global
interpolation makes the whole fragment be in the strong-
coupling regime. A local interpolation might fix this issue, but it
needs to be constructed carefully.22

An exception is the H2 molecule for which all the electrons
are involved in the bond. Indeed, Teale, Coriani, and
Helgaker28 had found a very good agreement between the ISI
model for the adiabatic connection curve (in a restricted
framework), and their accurate results in the case of the H2
molecule dissociation, when the bond is stretched up to 10
bohr. Their study used full configuration-interaction (FCI)
densities and the corresponding KS orbitals and orbital energies
from the Lieb maximization procedure as input quantities. They
have also tested how the choice of the parameter D in eq 10
affects the shape of the adiabatic connection curve. They found
that the original metaGGA choice used in ref 4 does not yield
accurate results, whereas the parameter D used here was found
to yield rather accurate results up to 10 bohr.
In Figure 7, we report the dissociation curves of the H2 and

N2 molecules in a spin-restricted formalism for different
methods. Our ISI results are not very accurate if compared to
the reference CCSD(T) results but qualitatively better than
MP2 and B2PLYP which diverge for large distance. The
inaccuracy of our ISI results originates form the approximated
LHF (or HF) densities, orbitals, and orbital energies; in fact,
the spin-restricted ISI turns out to be very sensitive to the input

Table 4. Mean Absolute Errors (kcal/mol) on Several Tests
As Obtained from ISI Calculations Using LHF and HF
Orbitalsa

test PBE HF+PBEloc MP2 B2PLYP ISI-HF ISI-LHF

thermochemistry
AE6 13.3 24.0 9.6 1.6 10.0 43.4
G2/97 14.7 26.3 12.3 4.0 15.9 53.1
IP13 3.3 7.0 2.2 1.9 3.0 6.0
EA13 2.8 9.0 3.4 4.1 5.9 9.3
PA12 2.2 6.6 1.0 1.4 0.9 2.6
K9 7.4 4.3 4.1 1.6 7.2 8.5
BH76 9.7 6.8 5.2 2.2 10.1 11.7
BH76RC 4.3 6.9 3.9 1.2 7.0 16.4

noncovalent interactions
HB6 0.4 1.7 0.4 0.4 0.7 1.1
DI6 0.4 0.4 0.5 0.5 0.8 3.3
CT7 2.3 1.1 0.8 0.6 2.2 7.5
DHB23 1.0 1.0 1.3 0.5 5.1 11.0
S22 2.7 1.9 1.2 1.9 0.4 1.5

statistics
RMAE 1.50 2.31 1.00 0.75 1.71 4.14

aPBE, HF+PBEloc, MP2, and B2PLYP results are reported for
comparison. The best (worst) result for each test is in bold
(underlined). The last line reports the relative MAE with respect
MP2 (eq 15).

Figure 5. Signed errors (kcal/mol) in the calculation of the interaction
energy of different dispersion complexes (1: He−Ne, 2: Ne−Ne, 3:
CH4−Ne, 4: CH4−F2, 5: CH4−CH4, 6: C6H6−Ne, 7: CH2−CH2, 8:
C2H4−C2H4, 9: C6H6−CH4, 10: C6H6 sandwich dimer, 11: C6H6 T-
shaped dimer, 12: C6H6 displaced dimer, 13: pyrazine-dimer, 14: uracil
stacked dimer, 15: adenine−thymine stacked dimer, and 16: indole−
benzene stacked dimer).

Figure 6. Interaction energy curves for Ne−Ne and C2H4−C2H4. All
energies have been corrected for the basis-set superposition error.
Reference values for Ne−Ne and C2H4−C2H4 have been taken from
refs 92 and 93, respectively.
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ingredients. The ISI results in ref 28 are much more accurate
due to the fact that FCI input density, orbitals, and orbital
energies have been used. Moreover, for H2, we recall that the
ISI results will be exact at infinite distance only if the parameter
D is self-interaction free for the H atom density.6

5. DISCUSSION
The results reported in Section 4 show that the performance of
ISI-HF is quite good when compared with HF+GGA methods
(e.g., HF+PBEloc) since the former describes dynamical and
static correlation without any error cancellation while the latter
do not. On the other hand ISI-HF is much less appealing, if
compared to MP2 which yields in many cases better results at
similar computational cost. One important exception are
dispersion interactions, for which ISI-HF outperforms MP2.
Instead, when ISI is applied to DFT orbitals (i.e., LHF), the
results are rather bad. In the following sections we try to
analyze and rationalize this performance in order to provide
useful information which can be used to improve functionals
based on interpolations between the weak and the strong
interacting limits.
5.1. Influence of the Size-Consistency Problem. Being

a nonlinear function of exact exchange and GL2 total energies,
the ISI xc energy functional is formally not size consistent. This
means that computing the (spin-unrestricted or spin-restricted)
ISI xc energy of two systems separated by a distance large
enough (eventually infinite) to make the interaction between
them negligible yields a result which is different form the sum
of the ISI xc energies of the two isolated systems.
One exception is the case of a set of identical systems, e.g., a

homonuclear dimer A − A, where A is closed-shell or the spin-
unrestricted formalism is used. Under these conditions Ex, EGL2,
W∞, and W∞′ are all size-consistent, thus X[A − A] = 2X[A],
while Y[A − A] = Y[A] and Z[A − A] = Z[A]. Since the ISI xc
energy (eq 5) is linear in X and W∞ is a size-consistent
quantity, the whole result is size consistent.
The issue of size inconsistency may, of course, affect the

results when atomization or interaction energies are calculated.
To investigate the relevance of this problem, we perform a

numerical study on the magnitude of this effect. Consider a
system M (e.g., a molecule) composed of different fragments Ai
(e.g., atoms) with i = 1,..., N. The total xc interaction energy in
this system is

∑= −
=

E M E M E A( ) ( ) ( )xc
int

xc
i

N

xc i
1 (16)

Here, Exc(M) denotes the xc energy of M and Exc(Ai) the xc
energy of the isolated fragment Ai. Consequently, if we denote
with M* the system obtained by bringing all fragments Ai at
large distance from each other (such that their mutual
interaction is negligible), this interaction energy can also be
written as

= − *E M E M E M( ) ( ) ( )xc
int

xc xc (17)

For any size-consistent method, eqs 16 and 17 give the same
result. However, for a nonsize-consistent method such as ISI,
their difference

∑Δ = * −
=

M E M E A( ) ( ) ( )xc xc
i

N

xc i
1 (18)

can provide a measure for the size-consistency problem (clearly,
Δxc = 0 for any size-consistent method).
In the specific case of ISI, we have

* = * * * ′ *∞ ∞E M f E M E M W M W M( ) ( ( ), ( ), ( ), ( ))xc x
ISI ISI

GL2
(19)

where f ISI(w1, w2, w3, w4) is the nonlinear function of four
variables defined in eqs 5 and 6. Assuming that all four
ingredients are size consistent, we can further write

∑ ∑ ∑

∑
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′

= = =
∞
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∞
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1 1
GL2

1

1 (20)

Even then, we typically have Δxc
ISI(M) ≠ 0 since f ISI is not linear,

i.e.

∑* ≠
=

E M E A( ) ( )xc
i

N

xc i
ISI

1

ISI

(21)

As previously mentioned, an exception arises in cases with
identical fragments, Ai = A (all i), since the function f ISI has the
property

=f Nw Nw Nw Nw Nf w w w w( , , , ) ( , , , )ISI
1 2 3 4

ISI
1 2 3 4

Using eq 19 and the corresponding expression for Exc
ISI(Ai), it

is possible to evaluate the effect of the size-consistency violation
of ISI for different systems. The results of these calculations are
reported, for a selected test set of molecules, in Table 5. In
these calculations, we have considered a spin-unrestricted
formalism for HF and GL2 calculations on open-shell atoms,
assuming that the corresponding results are properly size
consistent (whether this is formally correct is still under debate
in the literature;20 however, numerical results suggest that our
approximation is quite accurate in the considered cases).
Inspection of the table shows that for molecules composed of
first row elements (plus hydrogen) the values of Δxc are
negligible. Thus, the ISI functional behaves, in practice, as a

Figure 7. Dissociation energy curves for the H2 and N2 molecules in a
spin-restricted formalism. In this case, second-order perturbation
theory diverges as the molecule is stretched, and the ISI functional
tends to eq 12. Note also that ISI-LHF and ISI-HF will coincide at
infinite distance.
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size-consistent method. On the other hand, for molecules
including both first and second row elements, larger values are
found. We remark that these values are, anyway, often smaller
than few mHa per bond, so that the size-inconsistency problem
is not too large also in these cases.
The difference between the two kinds of behaviors observed

in Table 5 traces back to the fact that when only first row
elements are present all atoms display quite similar values of
exchange and GL2 correlation; thus, the ISI behavior is rather
similar to the ideal case of identical systems and the size-
consistency violation is small. On the contrary, when both first
and second row atoms are present, the atomic properties are
significantly different and the nonlinear nature of the ISI
formula leads to a non-negligible size inconsistency. Further
evidence of this fact is given in Figure 8, where we report the

values of Δxc for the atomization of a N2 molecule into two
atomic fragments having sevenelectrons each (as the N atom),
but nuclear charges Z1 = 7 + ΔZ and Z2 = 7 − ΔZ, for various
values of ΔZ. Indeed, the plot clearly shows that the size-
consistency problem grows with the difference between the two
atomic fragments.
5.2. Role of the Energy Gap. The fact that similar trends

are observed in Tables 1 and 2 for ISI and GL2 correlation
energies for different reference orbitals and different systems
suggests that the energy gap between occupied and unoccupied
molecular orbitals may play a major role in determining the
accuracy of the ISI correlation energy. This difference is in fact

smaller for semilocal DFT (PBE) and larger for HF, having
intermediate values for hybrid and the LHF methods. Similarly,
the energy gap is larger for closed shell atoms and smaller for
open-shell atoms and molecules. These observations fit well
with the behavior reported in Table 1 and Figure 4.
To investigate this feature, we have considered for all the

systems in Table 1 the application to the LHF ground-state
orbitals of a scissor operator to rigidly move all the unoccupied
orbitals up in energy by

αΔ = −E E E( [HF] [LHF])g g (22)

where Eg[HF] and Eg[LHF] are the HOMO−LUMO gaps for
HF and LHF, respectively, while α is a parameter used to tune
the effect. Thus, for α = 0, no shift is applied, whereas for α = 1
the applied shift is such that the LHF HOMO−LUMO gap is
lifted up to the HF value.
In the bottom panel of Figure 9, we report the deviations

from reference values of the ISI correlation energies of the N2

molecule and twice the N atom, as functions of the α parameter
of eq 22. The atomization correlation energy error is thus the
difference between these two curves. For simplicity, we
considered here results with the 5Z basis set and not the
extrapolated CBS ones. Hence, even at α = 0, the results for N2
are slightly different from the ones reported in Tables 1 and 2.
At α = 0, we have an atomization correlation energy error of
about 100 mHa. When α is increased, the absolute correlation
energies decrease due to an increased energy in the
denominator. However, the slopes of the lines are different.
At α ≈ 1 (i.e at the HF gap), the two lines almost cross,
meaning that the ISI-HF method yields the correct atomization
correlation energy.
The MAEs computed for different values of the parameter α

for the ISI correlation energies of open-shell atoms, molecules,
and both, as well as the MAE of the correlation atomization
energies, are reported in the upper panel of Figure 9. The plot
shows that the application of a shift for the unoccupied orbitals
generally leads to a worsening of the ISI correlation energies.

Table 5. Values of Δxc per Bond (in mHa), Calculated Using
Eqs 18, 19, and 20, for a Selection of Molecular Systemsa

molecule Δxc molecule Δxc

CH4 0.03 H2CO 0.01
NH3 0.03 HOOH 0.02
H2O 0.04 SiH2 0.00
FH 0.04 PH3 0.00
HCN 0.01 SO2 −2.44
CO −0.02 HCl 0.00
C2H4 0.02 PN −1.39
SiC −1.70 SiO −3.43
PO −3.25 NCl3 −1.33

aNote that since Ex is a size-consistent quantity, Δxc = Δc.

Figure 8. Upper panel: Values of Δxc as functions of ΔZ for the
dissociation of N2 into two atomic fragments having seven electrons
and nuclear charges Z1 = 7 + ΔZ and Z2 = 7 − ΔZ. Lower panel:
Values of ΔEx = Ex[f ragment1] − Ex[f ragment2] and ΔEcGL2 =
Ec
GL2[f ragment1] − Ec

GL2[f ragment2] as functions of ΔZ. The values of
ΔEx and ΔEcGL2 have been scaled only for graphical reasons.

Figure 9. Top panel: Mean absolute errors (MAEs) for the ISI
correlation and atomization correlation energies of the systems of
Table 1 as functions of the α parameter of eq 22. Bottom panel:
Deviations from reference values of the ISI correlation energies of the
N2 molecule and two N atoms as functions of the α parameter of eq
22. All results were computed using a cc-pV5Z basis set.
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This is particularly true for atoms, which already suffer for an
underestimation (in absolute value) of the correlation energy,
thus increasing the energy difference between occupied and
virtual orbitals adds a further underestimation. For molecules
instead at low values of α, a moderate improvement of the
correlation energy is observed since in most molecules LHF-ISI
overestimates (in absolute value) correlation energies that are
thus improved by the application of a shift. Nevertheless, for
larger values of α in all molecules an underestimation of the
correlation is found, so the results rapidly worsen with
increasing shift. We note that the rate of worsening for
molecular correlation energies is quite faster that that observed
for atoms.
5.3. Dispersion Interactions. The good performance of

the ISI-HF for dispersion interactions is surprising and deserves
further thoughts. First of all, we notice that the functional
Exc
ISI[ρ] defined by eqs 5−10 inherits (at least for the case of

equal fragments) the long-range ∼R−6 dispersion interaction
energy dependence from its EGL2 component (MP2 in the case
of HF reference orbitals considered here). Yet, it systematically
outperforms MP2, suggesting that it adds a sensible correction
to it. The analysis of Strømsheim et al.94 shows that the
adiabatic connection curve for the interaction energy of
dispersion complexes deviates significantly from the linear
behavior, requiring a considerable amount of “nondynamical”
correlation, which seems to be well accounted for by the ISI
functional (although the picture may be different with HF
orbitals).
A possible explanation may be derived by looking at the

functional W∞′ [ρ], which describes the physics of coupled
oscillations of localized electrons. Its PC semilocal approx-
imation of eq 10 is a quantitatively good approximation of this
energy.8 The physics of dispersion interactions is actually very
similar, describing oscillations of coupled charge fluctuations on
the two fragments. We suspect that when looking at the
interaction energy, the physics introduced by W∞′ [ρ] (when
subtracting the internal part of each fragment) is actually
correct. However, a more detailed study of this aspect is
required, and it will be the object of our future work.

6. CONCLUSIONS AND PERSPECTIVES
We have reported the first detailed study of the performances
of a functional that includes (in an approximate way) the
strong-coupling limit, analyzing its dependence on basis set,
reference orbitals, and other aspects such as the size consistency
error. Overall, the ISI functional has serious limitations, which
could have been expected from some of its formal deficiencies.
We have rationalized our findings, providing useful information
for functionals that can retain the information from the strong-
coupling limit while remedying to these deficiencies.22 In future
work, we plan to extend our analysis to functionals based on
local interpolations along the adiabatic connection,15,22−26

implementing the needed input quantities.
An unexpected finding that emerged from our study is a very

good performance of the ISI functional (when used as a
correction to Hartree−Fock) for dispersion interactions,
yielding a mean absolute error of only 0.4 kcal/mol on the
S22 set, and consistently improving over MP2 in a significative
way for dispersion complexes (Figures 5 and 6). We suspect
that the functional W∞′ [ρ], which describes coupled oscillations
of localized electrons, is able to capture the physics of
interaction energy in dispersion complexes. This is an

interesting perspective for the ISI functional, which we will
investigate in detail in a future work.
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(17) Karolewski, A.; Kronik, L.; Kümmel, S. J. Chem. Phys. 2013, 138,
204115.
(18) Mori-Sanchez, P.; Cohen, A. J.; Yang, W. T. J. Chem. Phys. 2006,
124, 091102.
(19) Gori-Giorgi, P.; Savin, A. J. Phys.: Conf. Ser. 2008, 117, 012017.
(20) Savin, A. Chem. Phys. 2009, 356, 91.
(21) Mirtschink, A.; Seidl, M.; Gori-Giorgi, P. J. Chem. Theory
Comput. 2012, 8, 3097.
(22) Vuckovic, S.; Irons, T. J. P.; Savin, A.; Teale, A. M.; Gori-Giorgi,
P. J. Chem. Theory Comput. 2016, 12, 2598−2610.
(23) Kong, J.; Proynov, E. J. Chem. Theory Comput. 2016, 12, 133−
143.
(24) Becke, A. D. J. Chem. Phys. 2013, 138, 074109.
(25) Becke, A. D. J. Chem. Phys. 2013, 138, 161101.
(26) Becke, A. D. J. Chem. Phys. 2013, 139, 021104.
(27) Malet, F.; Mirtschink, A.; Cremon, J. C.; Reimann, S. M.; Gori-
Giorgi, P. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 115146.
(28) Teale, A. M.; Coriani, S.; Helgaker, T. J. Chem. Phys. 2010, 132,
164115.
(29) Malet, F.; Mirtschink, A.; Giesbertz, K.; Wagner, L.; Gori-Giorgi,
P. Phys. Chem. Chem. Phys. 2014, 16, 14551−14558.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00713
J. Chem. Theory Comput. 2016, 12, 4885−4896

4895

mailto:eduardo.fabiano@nano.cnr.it
http://dx.doi.org/10.1021/acs.jctc.6b00713


(30) Mirtschink, A.; Umrigar, C. J.; Morgan, J. D.; Gori-Giorgi, P. J.
Chem. Phys. 2014, 140, 18A532.
(31) Vuckovic, S.; Wagner, L. O.; Mirtschink, A.; Gori-Giorgi, P. J.
Chem. Theory Comput. 2015, 11, 3153−3162.
(32) Langreth, D. C.; Perdew, J. P. Solid State Commun. 1975, 17,
1425.
(33) Görling, A.; Levy, M. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 50,
196.
(34) Mendl, C. B.; Lin, L. Phys. Rev. B: Condens. Matter Mater. Phys.
2013, 87, 125106.
(35) Chen, H.; Friesecke, G.; Mendl, C. B. J. Chem. Theory Comput.
2014, 10, 4360−4368.
(36) Liu, Z. F.; Burke, K. J. Chem. Phys. 2009, 131, 124124.
(37) Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Science 2008, 321, 792.
(38) Yang, W.; Mori-Sanchez, P.; Cohen, A. J. J. Chem. Phys. 2013,
139, 104114.
(39) Garza, A. J.; Scuseria, G. E.; Ruzsinszky, A.; Sun, J.; Perdew, J. P.
Mol. Phys. 2016, 114, 928.
(40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865.
(41) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158−6170.
(42) Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1996, 105,
9982−9985.
(43) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
(44) Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.
(45) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter
Mater. Phys. 1988, 37, 785.
(46) Della Sala, F.; Görling, A. J. Chem. Phys. 2001, 115, 5718−5732.
(47) Gritsenko, O. V.; Schipper, R. R. T.; Baerends, E. J. J. Chem.
Phys. 1997, 107, 5007.
(48) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
(49) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys.
1992, 96, 6796−6806.
(50) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358−
1371.
(51) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1994, 100, 2975.
(52) TURBOMOLE, V6.3; TURBOMOLE GmbH: Karlsruhe,
Germany, 2011. http://www.turbomole.com (accessed November
2015)
(53) Furche, F.; Ahlrichs, R.; Haẗtig, C.; Klopper, W.; Sierka, M.;
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(62) Zhao, Y.; Gonzaĺez-García, N.; Truhlar, D. G. J. Phys. Chem. A
2005, 109, 2012−2018.
(63) Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 3898.
(64) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415.
(65) Fabiano, E.; Constantin, L.; Della Sala, F. J. Chem. Theory
Comput. 2014, 10, 3151−3162.
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